
An Open-Source Software
for Interactive Visualization
Using Cþþ and OpenGL:
Applications to Stochastic
Theory Education in Water
Resources Engineering

ROBBY FLORENCE,1 FAISAL HOSSAIN,2 DAVID HUDDLESTON2

1Department of Computer Science, Tennessee Technological University, Cookeville, Tennessee 38505-0001

2Department of Civil and Environmental Engineering, Tennessee Technological University, 1020 Stadium Drive,

Prescott Hall, Cookeville, Tennessee 38505-0001

Received 24 July 2008; accepted 29 September 2008

ABSTRACT: The purpose of this article is to explain the design and implementation of an

open-source engineering education software called Stochastic Theory Education through

Visualization Environment (STEVE), version 2.0. In an earlier article, a proof-of-concept for a

computer-aided visualization tool (also named STEVE, version 1.0) for stochastic theory

education in water resources engineering was articulatedQ2 [see, Schwenk et al. Comput. Appl.

Eng. Educ., 2008, in press). Using Java Native Interfacing, it was shown that STEVE 1.0 could

wrap a space�time stochastic model written in any computer language and be independent of

any specific language compiler during tool usage. This article describes the general

philosophy, software design, and classroom usage for STEVE with significant improvements

on visualization and user-friendliness (hence, rightfully called version 2.0). The software was

created using the Cþþ programming language with the Microsoft Windows Applications

Programming Interface (API). OpenGL was used for the visualization display, and the OpenGL

Utility Toolkit (GLUT) was used to visualize text inside the OpenGL window. The instructor-

specified simulation program on stochastic theory was written in Fortran 77. The application

has user-friendly options for modifying input data and parameter specifications as desired by

the instructor or the student user. STEVE 2.0 has been tested with the Windows XP and

Windows Vista operating systems. For the benefit of interested users and software makers, we

CAE-08-076.R1(20288)

Endowment of Tennessee Technological University.

� 2009 Wiley Periodicals Inc.

Correspondence to F. Hossain (fhossain@tntech.edu).
Contract grant sponsor: Engineering Development Friends

1

also provide the software application, a short tutorial and all pertinent source codes as

freeware for download on our STEVE homepage at http://iweb.tntech.edu/saswe/steve.html.

�2009 Wiley Periodicals, Inc. Comput Appl Eng Educ 17: 1�10, 2009; Published online in Wiley InterScience

(www.interscience.wiley.com); DOI 10.1002/cae.20288

Keywords: water resources engineering; stochastic theory; curriculum; computer-aided

visualization. OpenGL; Cþþ

INTRODUCTION: MOTIVATION FOR
STOCHASTIC THEORY VISUALIZATION

In an earlier article, Schwenk et al. [1] commented on

the importance of stochastic theory visualization for

water resources engineering education as follows:

. . .most engineering university baccalaureate

programs introduce students to these concepts

only in the graduate level. Our recently concluded

survey of curriculum on stochastic theory in

water resources engineering education indicate

that 84% of all courses in nation are graduate

level. This means that the diverse but founda-

tional concepts making up stochastic theory, such

as random variables and processes, probability

density functions, moments, geostatistics, auto-

correlation, random field generation, time-series

analysis etc., can overburden freshmen graduate

students unless particular care is taken in demon-

strating these concepts via real-world exam-

ples . . . Conventional teaching paradigm for

delivering stochastic . . . continues to rest mostly

on text-based pedagogy involving comprehensive

stochastic theory books. While the traditional

method is still needed, there is scope to make

the subject matter more exciting and ’learner-

friendly’ by leveraging visualization technology.

For such a visualization system to be effective for

stochastic theory education, Schwenk et al. [1] further

reported that the visualization scheme should have

the following features: (1) real-world application of

a wide range of concepts of stochastic theory via a

practical tool that allows convenient computational

modeling of the variability of natural phenomena;

(2) full interactive control to students over the tool

to allow them to conveniently and rapidly modify

concepts, parameter values through add/remove

options, observe corresponding effect and thereby

foster inductive learning and generate research

curiosity; (3) multimedia and a computer-assisted

technology, such as a graphical user interface (GUI),

that combines (1) and (2) and further enhances the

user-friendliness of the modular modeling system.

Although there is no any educational software, to the

best of our knowledge, tailored for stochastic theory

education in water resources engineering, the inter-

ested reader can refer to some examples on visual-

ization tools for environmental education from Lai

and Wang [2], Valocchi and Werth [3], Li and Liu [4],

and Rivvas et al. [5].

The purpose of this article is to explain the

enhancement of an open-source engineering educa-

tion software called Stochastic Theory Education

through Visualization Environment (STEVE), version

2.0. In an earlier article appearing in the same journal,

a proof-of-concept of an earlier version for STEVE

(named STEVE, version 1.0) was articulated (see,

Schwenk et al. [1]). Therein, Schwenk et al. [1]

provided justification for the development of the

visualization software on stochastic theory through

survey of graduate and undergraduate curriculum

across the nation and the perception of classroom

instructors willing to use such a free software.

While the general concept embedded in STEVE

(version 1.0) and its potential for classroom usage

that can be afforded was described in that article of

Schwenk et al. [1], specific software building issues

were absent for interested software users and makers.

This article therefore addresses the software design

and implementation aspects along with significant

improvements on visualization and user-friendliness

(hence, justifiably called version 2.0). In essence, this

article is a sequel to Schwenk et al. [1] as the second

part of a two part series. Our motivation for such a

design and implementation document is to encourage

users, specifically software makers, to apply and

modify the tool for continual improvement in an open-

source manner.

Hereafter, we provide the details of the software

design issues in a step-by-step manner. Second section

describes the general philosophy of STEVE, while

third section elaborates the software design aspects.

Fourth section dwells on the classroom usage of

STEVE 2.0. Fifth section describes the possible ways

of improving initial understanding of difficult sto-

chastic theory concepts using STEVE 2.0. Finally,

conclusions are presented in the last section. We also

provide the software application, user manual, a short

tutorial, and all pertinent source codes as freeware for

2 FLORENCE, HOSSAIN, AND HUDDLESTON

download on our STEVE homepage at http://iweb.

tntech.edu/saswe/steve.html.

GENERAL PHILOSOPHY OF STEVE 2.0

STEVE 2.0 can essentially embed any stochastic

theory model and visualize its output. Typically, such

a stochastic theory model manifests several different

concepts (such as spatial statistics, temporal statistics,

probability density functions, random fields, etc.)

wherein the dominance of each concept can be

controlled quantitatively through user-defined set of

inputs. In STEVE 2.0, a stochastic theory model

called ‘‘SREM2D’’ (two-dimensional satellite rainfall

error model) developed by Hossain and Anagnostou

[6]. This model employs a stochastic theory code

written in Fortran 77, which corrupts a time series of

rainfall fields in space and time as per user-specified

error parameters. Users do not require a background

on computing to use STEVE 2.0. The general

flowchart for STEVE 2.0 is shown below:

General Folder and Data Organization
of STEVE 2.0

We encourage that readers download our STEVE 2.0

application package that is provided as a freeware at

http://iweb.tntech.edu/saswe/steve.html. Examination

of the source codes and folders will better facilitate

understanding of the STEVE software making process

described in this article. There are three folders, one

readme file, and one executable (on STEVE GUI).

The folders are:

* ‘‘doc’’: Contains all the necessary help and

documentation literature for the user to access

when needed from the GUI help menu. The user

need not do anything to this folder.
* ‘‘img’’: Contains iconic images for the STEVE

GUI. The user need not do anything to this folder.
* ‘‘simul’’: Contains the SREM2D Fortran code,

the SREM2D Fortran code executable, user-

specified input parameter file, user-specified

input parameter range file, input data, and output

data. It is basically this folder that the user needs

to manipulate for STEVE 2.0 usage.

Starting STEVE 2.0

STEVE 2.0 opens the visualization window by

clicking on the executable file STEVE.exe that is

shown as an icon in the package (Fig. 2).

SOFTWARE DESIGN ASPECTS

There are six major software design aspects of the

STEVE 2.0 program: (1) Stochastic Theory Simu-

lation Program; (2) Program Window; (3) Input Form;

(4) Visualization Process; (5) Visualization Color

Scheme; and (6) Configuration Parameters. Hereafter,

we describe the details of each of these six design

aspects (note that we use the terms as proper nouns,

and hence the capitalization of the first letter of each

word).

Stochastic Theory Simulation Program

The Simulation Program (SREM2D, in this case) is

separate from the STEVE program (‘‘simul/simula-

tion_fast.exe’’). It executes a simulation with the input

values from an Input Form, and its output is read by

STEVE program. The Simulation Program is exe-

cuted by the STEVE Window (Fig. 2). It reads the

list of input values from the ‘‘simul/params.dat’’

file written by the Input Form. After the simulation is

complete, the output file (‘‘simul/output.dat’’) is read

by the custom Visualization Process (described in

detail in Visualization Process Section as aspect #4).

The detailed processing of the Simulation Pro-

gram is not relevant to the development of STEVE

2.0. It is a ‘‘black box’’ entity, so any variation of the

simulation program can be substituted by the user or

Figure 1 General flow-chart of STEVE 2.0 that visualizes

the output of the Fortran-coded SREM2D against user-

specified input.

DESIGNQ1 AND IMPLEMENTATION OF STEVE 3

instructor in its place as long as it uses the same input

and output formats. Although our software visual-

ization package can be applied to many tasks, we have

developed and implemented it using a stochastic

theory simulation program unique to modeling

satellite rainfall data because of our strong interest

in water resources engineering.

The Simulation Program reads the parameters

from ‘‘simul/params.dat’’ generated by the Input

Form as well as simulation input from ‘‘simul/

input.dat.’’ The latter file is not used in any way by

the STEVE program. STEVE then writes the output

of the simulation to ‘‘simul/output.dat’’ (Fig. 1). Also,

in order to render the default visualizations, the file

‘‘simul/default.dat’’ must be created by executing the

Simulation Program with the default parameter values

and the maximum simulation period. The resulting

output file should be renamed to ‘‘default.dat.’’ This

only needs to be done once when a new Simulation

Program is used in the project.

Program Window

The Program Window is the main part of the STEVE

program. STEVE creates the window, menu, Input

Form, and Visualizations (see Fig. 2). It handles the

Windows message loop and messages for itself and

the Input Form. The STEVE Program Window

manages communication between the Input Form,

the Simulation Program, and the Visualizations.

It also enables OpenGL for the visualizations and

controls their animation (Fig. 1). In essence, this

window is part of the GUI that is manifested through

the Input Form (described in Input Form Section).

STEVE creates an Input Form at startup and

two Visualizations after a simulation run have been

executed (e.g., notice the two maps on the right-hand

side of Fig. 2). It handles window messages for the

Input Form and calls input form functions when the

corresponding messages are received. The Program

Window is responsible for executing the Simulation

Program when the ‘‘Start’’ button of the Input Form is

pressed. Lastly, it draws the visualizations as well as

the map axes and color bar.

When the ‘‘Start’’ button is pressed, the Program

Window creates and registers the window class

(Windows API, not this design entity). It then creates

the main window for the program, where the Visual-

izations will be drawn, and the parent window for the

input form. The Program Window also creates a shell

Figure 2 Screen-shot of STEVE 2.0. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]

4 FLORENCE, HOSSAIN, AND HUDDLESTON

execution information structure to run the Simulation

Program.

The Program Window enables OpenGL in its

main window for the Visualizations by getting a

handle to a device context, a pixel format that is

appropriate for both the graphics being drawn and the

monitor, and creating a rendering context. OpenGL

commands can then be executed and will be drawn

inside the main window. OpenGL is disabled when the

program exits by deleting the rendering context.

The STEVE Program Window also handles

the message loop for itself and the Input Form. The

loop continues until the program quits. If there is a

message waiting in the message queue, it is sent to

the WndProc function. Otherwise, Window draws the

visualizations. The WndProc function handles any

Windows messages, including when a button in the

Input Form is pressed, when a menu item is selected,

when the program window is resized, and when the

program window is closed. When the Start button in

the Input Form is pressed, Window tells the Input

Form to check the user input values. If the test passes,

the Input Form writes the user input values to the

Simulation Program’s input file (‘‘simul/params.

dat’’).

A small ‘‘Please Wait’’ dialog box is displayed

while the simulation program is running. The

Simulation Program is then executed using the shell

execution info created in the WinMain function. The

program waits until the Simulation Program finishes.

This is accomplished by a loop that checks for any

Window messages to the ‘‘Please Wait’’ dialog box,

handles the messages if there are any available, and

then waits until either the Simulation Program finishes

or a new Window message is added to the message

queue. The only message handled by this loop is the

message generated when the user clicks the ‘‘Cancel’’

button on the dialog box. The loop checks if the

‘‘Cancel’’ button has been pressed and if so, the

Simulation Program is terminated and the program

refreshes to its original execution. After the simu-

lation finishes (if it was not canceled), the time it took

to run is displayed by the Input Form, and two new

visualizations are created. The default visualization is

created from a pre-made output file (‘‘simul/default.

dat’’) generated by the Simulation Program with the

default input values, and the custom visualization is

created from the new output file of the Simulation

Program (‘‘simul/output.dat’’).

The WndProc function also handles messages

from the program’s menu by calling the appropriate

Input Form functions or opening help documents.

It creates dialog boxes for the ‘‘Report a Bug’’ and

‘‘Acknowledgements’’ menu items. These dialogs,

along with the ‘‘Please Wait’’ dialog box displayed

while the simulation is running and the menu itself,

are resources created in ‘‘resource.rc.’’ The ‘‘Report

a Bug’’ and ‘‘Acknowledgements’’ dialog boxes

have separate message handler functions called

RepBugDlgProc and AckDlgProc, respectively. Both

functions handle the message to remove the dialog

box when it is closed. AckDlgProc additionally

loads the institution logo (Tennessee Technological

University) from ‘‘img/TTULogoSm.bmp’’ when the

dialog box is created and launches the default web

browser to the project’s website when the URL is

clicked.

When the main Program Window is resized,

WndProc handles the message and calls the resi-

zeWnd function. This function extends the Input

Form to the bottom of the resized window and resizes

the OpenGL viewport to the new dimensions of the

window minus the space taken up by the Input Form.

It also sets the OpenGL orthographic projection,

allowing the Visualizations to be drawn in two

dimensions instead of three.

The Program Window draws the visualizations in

the message loop and controls their animation. The

map axes and color bar are always drawn, and both

Visualizations are drawn if they have been created. If

the Back button is pressed in the animation controls of

the Input Form, the frame of both visualizations is

decremented. If the Forward button is pressed or the

animation delay time has passed, the frame of

both Visualizations is incremented. The animation

delay time is measured in clock ticks since the

program started. If the animation is not paused, the

animation delay is retrieved from the Input Form

in seconds and converted to the next number of clock

ticks to advance the frame.

Input Form

The Input Form class creates a GUI for the user to

enter input values to send to the Simulation Program,

start the Simulation Program, and control the

animation of the Visualizations. It also writes the

parameters to the Simulation Program’s input file.

Input Form can load or save the user’s parameters to a

user-defined file.

Window creates an Input Form and handles

all window messages sent to the Input Form. The

Input Form class creates a list of Parameters for all

input values needed by the Simulation Program. Input

Form’s constructor sets the parent window of the form

elements and creates the list of Parameters, giving

each Parameter its name and other values. The parent

DESIGNQ1 AND IMPLEMENTATION OF STEVE 5

window must be created before the Input Form. The

list of Parameters is read from the file ‘‘simul/

paramInfo.dat.’’ The first line of this file must always

be the number of Parameters in the list. The following

line is the column headers for each Parameter’s

name, minimum, maximum, and default. This line is

ignored. Input Form reads each remaining line and

creates a Parameter with the information from the

line. The name of the Parameter must be separated

from the minimum value by at least one tab. All

characters up to the first tab in the line are stored as the

Parameter’s name. By using this file to create the list

of Parameters, the number and type of stochastic

theory concepts manifested by parameters can be

changed to allow changes to the Simulation Program.

The createWindows function is called by Win-

dow after the Input Form is instantiated. This function

displays the list of Parameters in the parent window,

each with a name (static), default value (static), and

user input value (edit). A ‘‘Start’’ button is created

below the list. A box to control the animation of the

visualizations is created below the Start button, with

three buttons to move back one frame, play/pause, and

move forward one frame (Fig. 2). A track bar is

created to control the speed of the animation. The

images for the animation buttons are loaded from

the corresponding files in the ‘‘img’’ folder. An empty

static field is created to display the simulation

generation time after a simulation has been com-

pleted. The institution logo (Tennessee Technological

University in this case) is loaded from ‘‘img/

TTULogo.bmp’’ and displayed on the bottom. When

the Input Form is created or when it is reset through

the program’s menu, all user input values are set to the

default value of the respective Parameter.

Before the Simulation Program is executed, all

input values must be checked to make sure they are

between the parameters’ minimum and maximum

values. This ensures that the Simulation Program does

not crash or produce an unrealistic output.dat file. If

one or more of the input values are invalid, an error

message will appear listing all invalid values and

Window will not execute the Simulation Program.

The Input Form then writes the user input values to a

file, which will be read by the Simulation Program

(‘‘simul/params.dat’’). Once the Simulation Program

completes, Window will calculate the time it took to

run, and Input Form will display the time in ‘‘mm:ss’’

format.

The Input Form class also has capabilities to load

and save the user’s list of input values for later use.

These functions open a standard Windows ‘‘Open’’ or

‘‘Save As’’ dialog box, and either set the user input

values in the GUI to the values in the file or write the

user input values to the file. In the animation controls,

Input Form alternates between play and pause when

the play/pause button is pressed and changes the

image displayed in the button accordingly. Input Form

also calculates the time between each frame of the

Visualizations based on the position of the animation

speed track bar. There are 10 positions on the track

bar, with the right position representing 0.33 s per

frame and each additional position to the left adds

0.33 s to the time between each frame. Input Form

stores the handle to its parent window (HWND). This

window is created before the Input Form and cannot

be changed after the Input Form is created.

The Input Form class also stores handles to the

play and pause images (HGDIOBJ), which are needed

when the play/pause button is pressed to alternate

images. Lastly, this class stores the number of

Parameters (int) and the list of Parameters (Parameter)

for the required input values of the Simulation

Program. This array is dynamically allocated in the

Input Form constructor and cannot be changed after

the Input Form is instantiated.

Visualization Process

The Visualization class draws all OpenGL elements in

the program, including the map axes, the color bar,

and the output map of the Simulation Program. It

reads the output file of the Simulation Program and

draws a map of the simulation at each time step.

The Window class creates two visualizations

for the default and custom maps. It also controls

the animation of the maps. The output file of the

Simulation Program (‘‘simul/output.dat’’) is read for

the custom visualization, and the default output of

the Simulation Program (‘‘simul/default.dat’’) is read

for the default visualization. It uses the Color class to

store the color for each grid in the map.

When a visualization is created, it reads the

output file of the Simulation Program and stores the

values in a three-dimensional array of floats. The first

dimension of the array is the time step, which is given

as a parameter to the constructor, followed by the row

and column of each value. The array is dynamically

allocated and is deleted when the visualization is

deleted.

The Visualization Process draws the map at the

current time step with the draw function. The top left

corner of the area to draw the map is given to draw the

map in the top or bottom map area. These parameters

should always be the predefined constants MAP1_

LEFT, MAP1_TOP or MAP2_LEFT, MAP2_TOP.

The current time period of the Visualization is

displayed in the center of the GL window. To make

6 FLORENCE, HOSSAIN, AND HUDDLESTON

the gradients smooth, each grid is divided into four

triangles. The color for each value in the array is set at

the vertex in the center of the grid. Looping through

all but the last row and column, the values in the map

at (rowþ 1, col), (row, colþ 1), and (rowþ 1, colþ 1)

form a square. The colors for these four values are

averaged, and a fifth vertex is created in the center of

the square, where the grid lines intersect. The five

vertexes are then connected by triangles. A total of 16

triangles are drawn for all interior grids, connecting

them with all 8 adjacent grids. When this loop

finishes, a small border (0.05 GL units) still remains

undrawn in the map.

Because there are not values outside the map to

get four color values, the outer edges cannot be drawn

in the same way as the center of the Visualization.

To draw the vertical edges, rectangles are drawn

connecting each grid with the grid below it. The top

two vertices are set to the color of the upper grid, and

the bottom two vertexes are set to the color of the

lower grid. The horizontal edges are drawn in the

same way. This still leaves an undrawn square in each

corner with a side length of 0.05 GL units. These

squares are filled with the color of adjacent corner grid

of the map.

The functions to draw the map axes and the color

bar are static and can be called without an instantiated

Visualization class. To draw the map axes, the

drawAxes function receives the top left corner of the

area to draw the axes in the same way as the draw

function. The axes are labeled ‘‘Default Map’’ or

‘‘Custom Map’’ depending on the given coordinates.

A grid line is drawn every 0.1 OpenGL units, and

every four grid lines extends a little farther out of the

map and is labeled. Each grid represents 25 km on the

map. To draw the color bar, a large rectangle is drawn

from the top of the top map to the bottom of the

bottom map. The rectangle is divided into five smaller

rectangles, with the color gradient from red at the top,

to yellow, green, cyan, blue, and finally white at the

bottom. Each interval is labeled and represents

10 mm/h. The top red interval is labeled ‘‘50þ mm/h’’

to show that all values greater than 50 are colored red.

When the draw function needs to determine the

color of a value in the map, the getColor function

interpolates the color based on the color bar. The color

bar of white, blue, cyan, green, yellow, and red allows

the RGB value of the color to be determined exactly

because each red, green, and blue value is either 0.0 or

1.0 for these colors. For values in the range (0, 10], the

blue value is always 1.0, and the red and green values

are interpolated from 1.0, if the value is 0.0, to 0.0, if

the value is 10.0. The equation ‘‘1� value/10.0’’ gives

this output. The value is divided by 10.0 because the

interval between white and blue is 10.0 mm/h. For

values in the range (10, 20], the red value is always

0.0, the blue value is always 1.0, and the green value

is interpolated from 0.0 to 1.0. The equation

‘‘(value� 10.0)/10.0’’ gives this output. The subtrac-

tion is needed to get the percentage the value has

passed the previous interval (blue, 10.0 mm/h). The

color for values in the rest of the intervals are

determined in the same way, in the range (20, 30] for

cyan to green, (30, 40] for green to yellow, (40, 50]

for yellow to red. Everything greater than 50.0 is red,

and 0.0 is the default color of white.

The main data member of visualization is the

three-dimensional map array (float***). This array is

dynamically allocated to the correct size when the

Visualization is created. Visualization also contains

the simulation period of the map (int), which is used to

read the correct amount of data from the Simulation

Program’s output file and to loop the animation. The

map and simulation period cannot be changed after

the Visualization is created. This class contains the

current frame of the animation (int), which is

incremented or decremented by the incFrame and

decFrame functions. The frame is the time step to

display when the draw function is called.

Visualization Color Scheme

The Color class contains a color value in RGB format.

The Visualization class uses Color to store the RGB

value for a point in the grid and update the OpenGL

color. Color’s default constructor sets its value to

white (1.0, 1.0, 1.0). Another constructor is available

to set the RGB values when the Color is created (not

currently used in the program). The RGB values can

be changed after the Color is created by the setRGB

function. All color values are restricted between 0.0

and 1.0 (inclusive) when they are changed by the

constructor or setRGB function. Color contains a

color’s red, green, and blue values (double). The data

members are private and can be retrieved by public

‘‘get’’ functions.

Configuration Parameters

The Input Form creates a list of Configuration

Parameters (hereafter called ‘‘Parameters’’). The

Parameter class contains information about an input

value for the Simulation Program, including its

name, minimum value, maximum value, and default

value. Parameters do not reference any other entities.

A Parameter is given all of its values in its constructor.

The values are checked to make sure the maximum is

DESIGNQ1 AND IMPLEMENTATION OF STEVE 7

greater than or equal to the minimum and the default

is between the minimum and maximum.

Parameters contains the name (char[50]) of the

input value, as well as its minimum, maximum, and

default values (double). All of these data members

are private and can be retrieved by public ‘‘get’’

functions. The data members cannot be changed after

the Parameters is created.

CLASSROOM USE OF STEVE 2.0

After clicking on the STEVE.exe icon, the user can

key in quantitative values in the input fields on the

left-hand side of the GUI. If the values are beyond a

realistic range specified in ‘‘simul/paramInfo.dat,’’ an

error message will appear and the program will not

execute. The user can also specify how many time

steps the SREM2D code will run (in our case, the data

allow a choice between 1 and 2,952 time steps).

Once all the fields are keyed in, the user hits the

start button. The GUI transfers the user-specified

parameters to SREM2D for execution and generation

of ‘‘output.dat.’’ The total simulation time is printed

when the execution is complete. Once simulation is

complete, STEVE visualizes the output.dat (a space-

�time field of rainfall shown as ‘‘Custom Map’’)

simultaneously with the ‘‘default.dat’’ (shown as

‘‘Default Map’’).

The simultaneous visualization allows the student

user to observe visually the impact on space and

time of the quantitative difference in input parameter

value between the default setting and the custom

(user-specified) setting (see Fig. 3). It is essentially

this user-friendly and interactive feature of STEVE

that we hypothesize as making the subject of

stochastic theory more interesting than textbook

pedagogy. (Note: In our earlier ensemble of works

reported by Schwenk et al. [1] and Hossain and

Huddleston [7], complete details on specific stochas-

tic theory concepts are provided). User can stop the

animation and observe one snapshot at a time for

closer inspection. User may also rewind, forward one

snap shot at a time, and also manipulate the animation

speed. In addition to all this, the user can perform

numerical analysis of the ‘‘simul/output.dat’’ and

‘‘simul/input.dat’’ or ‘‘simul/default.dat’’ to explore

the stochastic concepts further.

Using the ‘‘File’’ menu of STEVE, user may also

save the settings on input parameters. To save the

Figure 3 Executing STEVE as per user-specified input and observing the visual nuances between

default and custom maps that can connect to a set of stochastic theory concept. [Color figure can be

viewed in the online issue, which is available at www.interscience.wiley.com.]

8 FLORENCE, HOSSAIN, AND HUDDLESTON

‘‘output.dat’’ with a particular filename so that user

can identify it in future against the input setting and/or

perform statistical analysis, the user needs to use

the usual file renaming using ‘‘Explorer’’ or ‘‘My

Computer.’’

For convenience of the user, there exists a sub-

folder named ‘‘standard’’ under ‘‘simul.’’ In this sub-

folder, there are three files:

* ‘‘inputstd.dat’’: This file contains the input time

series of rainfall fields. The user should treat this

as a backup version of the ‘‘input.dat’’ that is in

the main ‘‘simul’’ folder. If the ‘‘input.dat’’ file is

accidentally deleted, the user should copy this

‘‘inputstd.dat’’ file to the ‘‘simul’’ folder and

rename it ‘‘input.dat.’’
* ‘‘inputstd_magnified10.dat’’: This file contains

the ‘‘input.dat’’ with values magnified by a factor

of 10. This file can be used to visualize the

input.dat in STEVE with magnified rainfall

values if there is a need. The user needs to copy

this file to ‘‘simul’’ folder and rename it as

‘‘default.dat.’’ The visualization then appears on

the upper panel.
* ‘‘default_magnified10.dat’’: Same as ‘‘input_

magnified10.dat’’ except that it is the output file

generated with default SREM2D parameters

with output values magnified by a factor of 10

(make the visualization color scheme promi-

nent). The user needs to copy this file to ‘‘simul’’

folder and rename it ‘‘default.dat’’ (visualization

will appear on the upper panel).

USING STEVE 2.0 FOR IMPROVING
UNDERSTANDING OF STOCHASTIC
THEORY CONCEPTS

As non-exhaustive set of examples, the following

stochastic theory concepts can be interacted with in

STEVE 2.0 (reader is encouraged to refer to [6]):

(1) Logistic regression: Rain detection capability

and rain detection sensitivity.

(2) Probability density function: False alarm rain

rates.

(3) First and second-order moments: Mean and

standard deviation.

(4) Geostatistics, random fields, and variograms:

Correlation length.

(5) Autocorrelation: temporal correlation.

(6) Bernoulli trials: probability of no-rain detection.

The user should either increase or decrease each

parameter value from the default value and then

compare the visualized output with the custom map.

Subsequently, the user should try to reconcile the

observed differences with the theory or initial under-

standing of the specific stochastic theory concept. For

example, an increase in correlation length can mean

that the rainfall structure may look ‘‘stretched’’ more.

Similarly, if the probability of no-rain detection is

reduced (from 0.95 to 0.55, Fig. 3), this means that

45% Bernoulli trials would be unsuccessful in

detecting no-rain and hence, these events would then

be subjected to false alarm rain rates (which can also

be played with).

It is up to the user how he/she wants to use

STEVE based on instruction provided by the

instructor. It is recommended that the instructor

provides some guidance and suggestions for setting

up various hypothesis construction experiments before

using STEVE 2.0. Understanding of the significance

of each of these stochastic concepts is better

appreciated if the general concepts of SREM2D error

corruption are understood first. We encourage that

instructor first explains the SREM2D concept (or any

other stochastic model in general that STEVE can

use as the black-box Simulation Program) through an

introductory workshop prior to STEVE 2.0 usage.

CONCLUSIONS

This article explained the design and implementation

of an engineering education software called STEVE,

version 2.0. Readers were encouraged to download

the freeware software package and source codes

available at http://iweb.tntech.edu/saswe/steve.html

and examine the contents and source codes. The

motivation for such a design and implementation

document was to encourage users specifically, soft-

ware makers, to apply and modify the tool for

continual improvement. The software was created

using the easily available Cþþ programming lan-

guage with the Microsoft Windows Applications

Programming Interface (API). OpenGL was used for

the visualization display, and the OpenGL Utility

Toolkit (GLUT) is used to visualize text inside the

OpenGL window. The instructor-specified stochastic

theory simulation program was written in Fortran 77,

although the simulation program itself is a ‘‘black-

box’’ in STEVE 2.0. The application has user-friendly

options for modifying input data and parameter

specifications as desired by the instructor or student

user. STEVE 2.0 has been tested with the Windows

XP and Windows Vista operating systems. It is our

hope that the open-source nature of STEVE 2.0 will

prompt software makers to improve such educational

DESIGNQ1 AND IMPLEMENTATION OF STEVE 9

tools and make them available freely for the student

and instructor community.

ACKNOWLEDGMENTS

The first author gratefully acknowledges the support

received from the Engineering Development Friends

Endowment of Tennessee Technological University

in the form of a grant. Partial support from the

NASA New Investigator Program (Hossain) is also

acknowledged.

REFERENCES

[1] J. Schwenk, F. Hossain, and D. Huddleston, AQ3

computer-aided visualization tool for stochastic theory

education in water resources engineering, Comput Appl

Eng Educ (2008) (in press).

[2] X. Lai and P. Wang, GeoSVG: A web based interactive

plane geometry system for mathematics education,

Proceedings of ICET 2006—Education and Technology,

July 17�19, Alberta, Canada, 2005. (File last retrieved

on July 24, 2008 from http://www.actapress.com/Paper

Info.aspx?PaperID¼27538).

[3] A. J. Valocchi and C. J. Werth, Web-based interactive

simulation of groundwater pollutant fate and transport,

Comput Appl Eng Educ 12 (2004), 75�83.

[4] S.-G. Li and Q. Liu, Interactive groundwater (IGW): An

innovative digital laboratory for groundwater education

and research, Comput Appl Eng Educ 11 (2003),

179�202.

[5] A. Rivvas, T. Gomez-Acebo, and J. C. Ramos, The

application of spreadsheets to the analysis and opti-

mization of systems and processes in the teaching of

hydraulic and thermal engineering, Comput Appl Eng

Educ 14 (2006), 256�268.

[6] F. Hossain and E. N. Anagnostou, A two-dimensional

satellite rainfall error model, IEEE Trans Geosci

Remote Sensing 44 (2006), 1511�1522 (10.1109/

TGRS.2005.863866).

[7] F. Hossain and D. Huddleston, A proposed computer-

assisted graphics-based instruction scheme for stochas-

tic theory in hydrological sciences, Comput Educ J XVII

(2007), 16�25.

BIOGRAPHIES

Robby Florence graduated in 2008 with a

BS in Computer Science from Tennessee

Technological University. He is currently

pursuing a MS at University of North

Carolina, Chapel Hill. His research interests

span the development of user-friendly edu-

cation software.

Faisal Hossain is an assistant professor in

Civil Engineering at Tennessee Technolog-

ical University. He obtained his PhD in

Environmental Engineering from the Uni-

versity of Connecticut in 2004 and his BS

from the Indian Institute of Technology,

Varanasi (India) in 1996. His research

interest in engineering education involves

the development of visualization softwares

for enhancing instruction in the classroom. He is the recipient of the

NASA New Investigator Program Award in 2008. Since 2006, he

has been the associate editor of the Journal of American Association

of Water Association.

Dr. David H. Huddleston PhD, PE, was

appointed Interim Dean, College of Engi-

neering, at Tennessee Technological Univer-

sity (TTU), Cookeville, Tennessee, in July

2007. Previously, he served as professor and

chair of the Department of Civil and Environ-

mental Engineering at Tennessee Techno-

logical University (TTU), Cookeville,

Tennessee, beginning in August 2004. He

earned his BS in Engineering Science at TTU, his MS in

Engineering Science and Mechanics from Virginia Polytechnic

Institute and State University, and his PhD in Engineering Science

from the University of Tennessee. His current research interests

include computational hydrodynamics, computational fluid dynam-

ics, computational design, and surface water quality modeling. He is

a registered engineer in Mississippi and Tennessee. Prior to his

appointment at TTU, Huddleston held faculty appointments in the

Civil Engineering and Computational Engineering Departments at

Mississippi State University. Before entering academia, Huddleston

was employed by Sverdrup Technology, Inc. and Pan-Am World

Services, Inc. at the USAF Arnold Engineering Development

Center, and TRW, Inc.

Q1: Please check the suitability of the short title on

the odd-numbered pages. It has been formatted to

fit the journal’s 45-character (including spaces)

limit.

Q2: Please check the presentation of the reference

citation in the abstract and also update.

Q3: Please update.

10 FLORENCE, HOSSAIN, AND HUDDLESTON

