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ABSTRACT: The Ganges–Brahmaputra–Meghna (GBM) river basins ex-
hibit extremes in surface water availability at seasonal to annual time scales.
However, because of a lack of basinwide hydrological data from in situ plat-
forms, whether they are real time or historical, water management has been
quite challenging for the 630 million inhabitants. Under such circumstances, a
large-scale and spatially distributed hydrological model, forced with more
widely available satellite meteorological data, can be useful for generating high
resolution basinwide hydrological state variable data [streamflow, runoff, and
evapotranspiration (ET)] and for decision making on water management. The
Variable Infiltration Capacity (VIC) hydrological model was therefore set up for
the entire GBM basin at spatial scales ranging from 12.5 to 25 km to generate
daily fluxes of surface water availability (runoff and streamflow). Results in-
dicate that, with the selection of representative gridcell size and application of
correction factors to evapotranspiration calculation, it is possible to signifi-
cantly improve streamflow simulation and overcome some of the insufficient
sampling and data quality issues in the ungauged basins. Assessment of skill of
satellite precipitation forcing datasets revealed that the Tropical Rainfall
Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA)
product of 3B42RT fared comparatively better than the Climate Prediction
Center (CPC) morphing technique (CMORPH) product for simulation of
streamflow. The general conclusion that emerges from this study is that spatially
distributed hydrologic modeling for water management is feasible for the GBM
basins under the scenario of inadequate in situ data availability. Satellite pre-
cipitation forcing datasets provide the necessary skill for water balance studies
at interannual and interseasonal scales. However, further improvement in skill
may be required if these datasets are to be used for flood management at daily to
weekly time scales and within a data assimilation framework.

KEYWORDS: Precipitation; Hydrologic models; Land surface model;
Model evaluation/performance

1. Introduction
The Ganges–Brahmaputra–Meghna (GBM) river basins represent one of the

largest set of basins with land areas from Bangladesh, India; Nepal; Bhutan; and
China (Nishat and Rahman 2009;F1 Figure 1). The total drainage area is about
1.72million km2, with a population of at least 630 million. The most downstream
country (i.e., Bangladesh) occupies only 8% of GBM basin area with 100% of basin
streamflow flowing through the country and discharging into the Bay of Bengal
(Nishat and Rahman 2009).

The GBM basin exhibits extremes in surface water availability, making water
resources management quite challenging at seasonal to annual time scales. For
example, annual rainfall in the GBM ranges from 990 to 11 500mm (Shah 2001).
On the other hand, streamflow in the downstream regions of the Brahmaputra and
Ganges Rivers can vary from 5000m3 s21 in winter to 80 000m3 s21 during the
monsoon season (Mirza 2004). Such wide-ranging interannual variation exceeding
by an order of magnitude can be explained by the Himalayan and Vindhya Ranges
that are the key sources of water for these rivers (including Meghna River). The
Himalayan Range covers about 15 000 glaciers, which stores about 12 000 km3 of
freshwater (Dyurgerov and Meier 2005). Hence, annual water distribution in the
GBM basin is highly dominated by the storage of precipitation (snow and ice) over
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a long period in the Himalayas (Chowdhury and Ward 2004). In addition, elevations
of the Vindhya Range in the south, at an elevation from 450 to 1100m (Figure 1),
contribute significant amount of orographic precipitation to nourish the southern
tributaries of the Ganges–Yamuna system. After the Amazon and Congo Rivers,
the GBM river system represents the largest freshwater outlet to the World Ocean
(Chowdhury and Ward 2004).

Water resource management is the activity of planning, developing, distributing,
and managing the optimum use of water resources (Biswas 2008). As such, water
management therefore includes management of flood, drought, crop, and water
quality. Among them, flood forecasting is probably more important for the GBM
basin inhabitants, since it is relatively more devastating, particularly in the
downstream regions, such as Bangladesh (Mirza 2003). To reduce vulnerability to
water extremes (e.g., floods and droughts), access to basinwide hydrological data
such as precipitation (rainfall and snow), river flow, river water stage, surface
runoff, and soil moisture, especially from upstream nations of GBM, is very critical
for effective water resources management.

The most reliable method of acquiring hydrological data has historically been
through ground instrumentation. However, in situ monitoring stations have de-
clined rapidly around the world, particularly for precipitation and streamflow
measurement (Shiklomanov et al. 2002; Vörösmarty 2002). The ground observa-
tion network is also not dense in large parts of the world, and there is no universal
way to collect and share streamflow worldwide on a real-time basis. The GBM

Figure 1. The Ganges–Brahmaputra–Meghna river basins of South Asia. The red
circle indicates the location of entry points inside Bangladesh.

Fig(s). 1 live 4/C
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basin is no exception. Hydrological data collection and sharing of that hydrological
information among riparian nations are known to be fundamentally intractable
issues (Bakker 2009; Balthrop and Hossain 2010). Because of the lack of basin-
wide hydrological data, whether it is real time or historical, water management at
the basinwide scale has been quite challenging.

To address the absence of routine and basinwide hydrological data needed for
water management, hydrological modeling of the basin has often been used as an
alternative approach. Through such modeling, hydrological variables, such as
runoff, infiltration rate, evapotranspiration, and streamflow, which are important
for water management, can be routinely generated in a spatially distributed
manner at the expense of equally routine but easier to measure meteorological
forcing data (e.g., precipitation, wind speed, temperature). A hydrological model
can yield information on water availability at closer space–time resolutions, where it
is very hard to place gauges. Thus, a hydrological model can bridge gaps in in situ
measurement as well as keep track of the terrestrial component of the dynamic water
cycle.

As there is a general lack of in situ meteorological data availability for forcing
a hydrological model, there is often a need to use the more widely available
satellite-based forcing products (Gebregiorgis et al. 2012; Gebregiorgis and
Hossain 2011, 2013; Hong et al. 2004; Khan et al. 2012; Nijssen and Lettenmaier
2004; Kamal-Heikman et al. 2007). Given the challenging size, scale, and makeup
by five riparian nations with no mechanism to share hydrological or meteorological
forcing data (Katiyar and Hossain 2007), satellite estimated data such as precipi-
tation, temperature, and wind are likely to be the more realistic source for forcing a
hydrologic model for water management.

Satellite-based geodetic and remote sensing platforms are increasingly common
in collecting hydrological measurements (Brakenridge et al. 1994; Birkett 1998;
Al-Khudhairy et al. 2001). The ability to collect data and monitor rivers by using
satellite-based techniques is likely to become increasingly necessary. There are
also satellite-based precipitation products like the Climate Prediction Center (CPC)
morphing technique (CMORPH; Joyce et al. 2004; Joyce and Xie 2011), Precip-
itation Estimation from Remotely Sensed Imagery Using Artificial Neural Net-
works (PERSIANN; Hsu et al. 1997; Hong et al. 2004; Hsu et al. 2010), and
Tropical Rainfall Measuring Mission (TRMM)-based 3B42RT (Huffman et al.
2010). There are also new satellite missions proposed for enhancing the availability
of such hydrological data, such as precipitation [Global Precipitation Measurement
(GPM) mission; Smith et al. 2007], streamflow [Surface Water and Ocean To-
pography (SWOT) mission; Alsdorf et al. 2007], and soil moisture [Soil Moisture
Active and Passive (SMAP) mission; Entekhabi et al. 2010]. Fairly high spatial
(0.258) and temporal resolution (3 hourly) satellite precipitation data are already
routinely available.

Integration of satellite remote sensing forcing data in GBM-scale hydrologic
modeling is therefore worthy of exploration for water management for the in-
habitants. For example, during flood management, remote sensing can provide
information on flood extent, water stage, and surface runoff contributing to river
flow in a cost-effective manner via distributed hydrological modeling (Nishat and
Rahman 2009). In addition, remote sensing derived hydrologic modeling variables
such as runoff, baseflow, and evapotranspiration (ET) are useful for water resources
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management. Such a large-scale hydrologic model, if it is spatially distributed, can
overcome the key challenges to water resources management in the GBM basin.

Although a hydrological model can be a potential tool for simulation of water
management variables (runoff and streamflow), good quality modeling at a con-
tinental scale spanning more than 1million km2 and five nations, such as the GBM
basins, has not been reported in literature. To the best of our knowledge, the only
GBM-wide hydrologic model currently in existence for water management is that
reported by Nishat and Rahman (2009). Although the application of a hydrologic
model provided the necessary platform for understanding the challenges of ba-
sinwide modeling for the GBM, the monthly simulation scale along with the
lumped (at the subbasin scale) nature of the model used in Nishat and Rahman
(2009) offered very limited potential for water management. On the other hand, the
nearby basin of the Irrawaddy River has experienced water management with
hydrological modeling. A reasonable agreement between simulated and observed
streamflow at the Pyay station on the Irrawaddy River was reported by Chavoshian
et al. (2007). The model-simulated streamflow was underestimated by 15% and
40% for high- and low-flow seasons, respectively. Satellite-based precipitation data
(GPCP) were used along with other public domain available data such as global
coverage topographic data land cover and soil types. Similarity between different
catchments was analyzed to identify proxy catchment for transferring parameters.
A parsimonious version of the Block-Wise Use of TOPMODELAU1 (BTOPMC) hy-
drologic model was applied to simulate streamflow of the Irrawaddy River using
the Mekong basin as a proxy. Shamsudduha et al. (2012) used two data sources
(satellite gravimetric observations and hydrological modeling) for in situ
groundwater table measurements for understanding annual water groundwater
storage variations in Bangladesh.

In this regard, there are two scientific questions that motivate this study: 1) How
well can we model the hydrological state variables for the GBM basin using a
large-scale hydrological model forced with satellite meteorological datasets?
2) How can we advance the application of satellite datasets, notably precipitation,
to improve the hydrologic modeling for decision making on GBM basin water
management?

Our study therefore had two key objectives: 1) to develop, calibrate, and validate
a macroscale, spatially distributed hydrologic model for the GBM basins and 2) to
evaluate the performance of key satellite precipitation forcing datasets in a manner
that can be useful for further improvement of satellite precipitation data devel-
opment. In general, the GBM basin, like many other regions, is vulnerable to water
resources availability that often manifests as shortage (drought or upstream and
unilateral extraction by dams or diversion projects), excess (floods), and crop
damaging natural disasters (cyclones and river flooding). Among various options to
build resilience against this vulnerability, one of the most cost-effective strategies
with a proven benefit-to-cost ratio is to institutionalize a near-real-time visuali-
zation system that can monitor and provide early warning of the potential changing
dynamics of water cycle parameters as well as provide accurate postdisaster (or
predisaster) assessment. For example, recent rural household surveys in Bangladesh
have revealed that a doubling of the flood forecasting range from 3 to 7 days can
potentially minimize losses further from 3% to 20% for the Bangladesh economy
(CEGIS 2006). Such a comprehensive near-real-time visualization system could
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provide routine and early information to management agencies with a mandate for
improving resilience against water-related vulnerability. This study on the devel-
opment of a satellite data–based large-scale hydrological model for the GBM
basins will therefore shed light on the improvements needed for hydrological
modeling and satellite datasets for decision making.

The study is organized as follows: Section 2 provides a brief overview of the
GBM basin hydrologic, terrain, land use/land cover (LULC), soils, and vegetation
features followed by a basic description of the macroscale model used. Section 3
describes the calibration and validation of the hydrologic model. Section 4 presents
the assessment of the skill of satellite precipitation data for basinwide hydrologic
modeling of streamflow along with the potential underlying physical reasons for
the skill. Finally, section 5 provides the findings and conclusions of this study and
recommendation for future study.

2. The GBM basin, data, and hydrologic model

2.1. The river basins

The geographical location of GBM basin is between 218680 and 318430N and
between 738430 and 978680E. The Ganges, Brahmaputra, and Meghna Rivers are
the three major rivers in GBM basin. The Himalayan and Vindhya Ranges are the
sources of these three rivers (Nishat and Rahman 2009). The area of Himalayas is
1.089million km2 and the highest elevation is 8848mF2 (Figure 2). The Himalayas
are comprised of more than a hundred mountains exceeding 7200m in height.
Elevations of the Vindhya Range are from 450 to 1100m.

2.2. Data

The following types of data were collected, processed, and analyzed for setting
up the GBM basin model: 1) topographic data, 2) meteorological forcing data,
3) vegetation data, and 4) soil data. For topographic data, a digital elevation model
(DEM) was created for the GBM river basins by collecting elevation data from the
Shuttle Radar Topographic Model (SRTM) (http://www2.jpl.nasa.gov/srtm/dataprod.
htm). The resolution of this DEM was 90m. The elevation of GBM basins ranged
from 237 to 8840m (above mean sea level). The DEM of GBM basins is shown in
Figure 2 (top). Using the SRTM DEM of GBM basins, the corresponding stream
network was generated. The Arc Hydro software was used for this purpose. The
generated stream network of the GBM basins is shown in Figure 2 (middle).

Precipitation data was collected from Global Summary of the Day (GSOD) of
the U.S. National Climatic Data Centre (NCDC). This data source was aug-
mented with data collected from the International Centre for Integrated Mountain
Development (ICIMOD) located in Nepal. The daily precipitation data for the
period of 2002–10 were collected for entire GBM basins. Stations with more than
50%missing data were discarded. The missing data were replaced with precipitation
data provided by a newly quality controlled dataset called Asian Precipitation—
Highly-Resolved Observational Data Integration Towards Evaluation of
Water Resources (APHRODITE) that is built specifically for the Asian region
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Figure 2. (top) Topographic map of GBM basin derived from SRTM elevation data,
(middle) stream network of GBM basins derived from SRTM DEM data, and
(bottom) soil type for the GBM river basins as obtained from the Food and
Agriculture Organization. Maps are intentionally qualitative (no color
coding) to represent the overall diversity in geophysical features.

Fig(s). 2 live 4/C
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(http://www.chikyu.ac.jp/precip/; Yatagai et al. 2012). However, APHRODITE
datasets extend only up to the end of 2007 (at the time of writing this manuscript).
Thus, the TRMM (3B42, version 7; Huffman et al. 2010) was used for replacing the
missing precipitation data from 2008 to 2010.F3 Figure 3a shows the station locations
used for in situ forcing precipitation data.

Daily temperature (maximum and minimum) and wind speed data were also
collected from NCDC (http://gis.ncdc.noaa.gov) pertaining to 104 stations lo-
cated within the GBM basins area (that registered less than 30% missing data).
Snow depth data were from the Interim European Centre for Medium-Range
Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim; daily, 1.58 resolution;
http://data-portal.ecmwf.int/data/d/interim_daily/). Snow extent data were from
Moderate Resolution Imaging Spectroradiometer (MODIS) data collected on
board the National Aeronautics and Space Administration (NASA) Terra and Aqua
platforms (8-day sampling and 500-m resolution). The snow depth data were re-
sampled to the resolution 0.1258 and 0.258 for integrated in the hydrologic model.
Figure 3b shows the location of NCDC hourly weather stations. Vegetation data
such as the leaf area index (LAI) are also important input to hydrologic model. The
LAI data were obtained from TerraMODIS LAI and regridded to 0.1258 and 0.258
grid cells for integration in the hydrologic model. Finally, soil type data were
collected from Food and Agriculture Organization (FAO; http://www.fao.org/nr/
land/soils/harmonized-world-soil-database/en/; Batjes 2009). In FAO, soil type
data are available all over the world. This also included soil parameters such as
porosity and saturated hydraulic conductivity, which are needed for hydrologic
model parameter calibration. Figure 2 (bottom) shows the soil type for the GBM
basins.

2.3. Hydrological model

The Variable Infiltration Capacity (VIC) model, first developed by Liang et al.
(1994), was used as the macroscale distributed hydrological model. VIC is a large-
scale, semidistributed macroscale hydrological model. It is capable of solving full
water and energy balances. The basic structure of the VIC model is described in
detail by Liang et al. (1994); many subsequent papers have described various
updates to the model [e.g., Cherkauer et al. (2003) for cold land process updates,
Andreadis et al. (2009) for snow model updates, Bowling and Lettenmaier (2010)
for lakes and wetlands]. The model has been widely applied for purposes such as
seasonal hydrological forecasting, climate change impacts studies, and water and
energy budget studies, among various other applications. VIC’s distinguishing
hydrologic features are its representation of the role of subgrid variability as a
control on soil water storage and in turn runoff generation and its parameterization
of base flow, which occurs from a lower soil moisture zone as a nonlinear recession
(Dumenil and Todini 1992).

The basic model features of VIC are as follows: 1) the land surface is modeled as
a (lumped) grid of large (.1 km), flat, uniform cells; 2) inputs to the model are time
series of daily or subdaily meteorological drivers (e.g., rainfall, snow, air tem-
perature, wind speed); 3) land–atmosphere fluxes and the water and energy bal-
ances at the land surface are simulated at a daily or subdaily time step, and water
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Figure 3. (a) Rainfall stations over GBM basins with available data from 2002 to 2010.
(b) Meteorological stations with hourly weather data over GBM basin
(source: NCDC).

Fig(s). 3 live 4/C
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can only enter a grid cell via the atmosphere; 4) grid cells are simulated inde-
pendently of each other, and the entire simulation is run for each grid cell sepa-
rately, one grid cell at a time, rather than for each time step, looping over all grid
cells; and 5) routing of streamflow is performed separately from the land surface
simulation, using a separate model [i.e., the routing model of Lohmann et al.
(1998)]. As noted earlier, the model domain is the GBM basins of South Asia
(Figure 3), composing a catchment area of 1.72million km2.T1 Table 1 provides the
area of each river basin, the gridcell size and the total number of grid cells.

3. Model calibration and validation
The model simulation period was divided into two parts: 2002–05 and 2006–10.

The daily simulation period 2002–05 was used for calibration, while the period
2006–10 was used for validation (at daily time step). The GBM basin model-
simulated daily streamflow data of all rivers corresponding to the gridcell outlet
locations along the rivers. Figure 1 shows the locations of simulated streamflow
data where rated streamflow data were available. The GBM basin model-simulated
streamflow at Bahadurabad on the Brahmamputra River (known as Jamuna River
inside Bangladesh) and Hardinge Bridge on the Ganges River are shown inF4 Figures 4
andF5 5, respectively. It is evident from Figure 4 that the GBM basin model-simulated
streamflow was underestimated at Bahadurabad on the Jamuna River. On the other
hand, Figure 5 shows that the GBM basin model-simulated streamflow was over-
estimated during peak monsoon season at Hardinge Bridge on the Ganges River.
Overall, the over- and underestimation pointed to the need for calibration and further
model tweaking.

Among the VIC model parameters to be calibrated, the ones recommended are
soil parameters such as variable infiltration curve parameter (b_infilt), fraction of
the DSmax parameter (Ds), fraction of maximum soil moisture (Ws), Dsmax, and
thickness of each soil moisture layer (depth). Based on published literature on the
VIC model (see Liang et al. 1994; Cherkauer et al. 2003; Bowling and Lettenmaier
2010), these parameters are the most sensitive set requiring calibration. A set of
parameters with different combinations were used for model simulation for sen-
sitivity analysis for the years 2002–05. Based on the optimum value of streamflow
[i.e., with minimum root-mean-square error (RMSE) in streamflow simulation], a
corresponding set of soil parameters was set as calibrated. The calibrated soil
parameters for the Brahmaputra and Ganges basins are shown inT2 Table 2.

In addition to calibration of soil parameters (which, however, did not completely
resolve the issue of over-/underestimation of streamflow simulation), model
equations related to simulation of ET needed to be adjusted for bias for im-
provement of streamflow simulation. Results from the calibration period indicated
that the GBM basin model had a tendency to simulate either unusually large or

Table 1. Model domain and resolution of the GBM basins.

Basin Area (km2) Spatial resolution No. of grid cells Peak elevation (m)

Ganges 1 087 300 0.1258 5506 3892
Brahmaputra 552 000 0.2508 775 8848
Meghna 82 000 0.1258 467 600
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small amounts of ET, potentially because of quality issues in the temperature,
snow, and wind data and not the equation that estimates ET. This unusual ET
estimation, either exceeding 80% or less than 10% of total precipitation, was found
to lead to an overall underestimation or overestimation of streamflow, respectively,

Figure 4. GBM basin calibratedmodel’s simulation of streamflow at Bahadurabad of
the Jamuna (Brahmaputra) River for the period of 2002–05.

Figure 5. GBM basin calibratedmodel’s simulation of streamflow at Hardinge Bridge
of Ganges River for the period of 2002–05.

Fig(s). 4,5 live 4/C
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because of the model’s tendency for water balance. Thus, by applying a multi-
plicative correction factor to the ET equation, a significant amount of bias in ET
estimation could be removed. It should be clarified here that such an adjustment of
bias in ET (through the ET equation) is an ‘‘ad hoc’’ procedure to overcome the
fundamentally intractable quality of input forcing data that we have no control of.
Furthermore, and for the same reasons of input forcing data quality, we explored
the impact of gridcell size on the simulation of accuracy of streamflow. The goal
was to identify if a more representative gridcell size existed that would be more
appropriate given the quality and scale of the input forcing data. We explored two
gridcell sizes: 0.258 (25 km) and 0.1258 (12.5 km). By exploring two different
gridcell resolutions, more accurate simulation of streamflow was possible by as-
signing an appropriate gridcell size for each basin. Thus, ET applied a correction
factor while each basin was investigated for the gridcell size that improved
streamflow simulation accuracy [Equation (2)AU2 ]. The model efficiency was used as a
key performance criterion and was evaluated using the following equation:

Efficiency5 12 (s2
error /s

2
rated) , (1)

where, Qsim is model-simulated streamflow, Qrated is rated streamflow, and s is the
standard deviation.

In the VIC model, the ET was calculated using the following equation with
correction factor:

E5ET Correction Factor3
PN

n51

Cn3 (Ec,n1Et,n)1 cN113E1 , (2)

Where E is the total evapotranspiration;

ET correction factor is the multiplication factor for adjusting ET;
Cn is the vegetation fractional coverage for the nth vegetation tile;
CN11 is the bare soil fraction

PN
n51

Cn5 1;
Ec,n is the evaporation from the canopy layer;
Et,n is evaporation from the vegetation tiles; and
E1 is evaporation from the bare soil.

For reducing runoff over Brahmaputra basin of GBM basin model, a factor of
less than 1.0 was used [because this basin produced an unusually high ET; see
Equation (2)]. Sensitivity analysis of ET correction factor for Brahmaputra basin is
shown inT3 Table 3. Based on model performance of GBM basin over Brahmaputra
basin, an ET correction factor of 0.30 was found to minimize the RSME values for

Table 2. Calibrated soil parameters for the Brahmaputra and Ganges basins.

Soil parameter
Range used for sensitivity
studies (manual optimization)

Calibrated value

Brahmaputra basin Ganges basin

b_infilt 0.000 01–0.4 0.2 0.001 00
Ds (fraction) 0.001 to ,1 0.001 0.123 45
Dsmax (mmday21) .0–30 11.51 1.790 10
Ws (fraction) .0.5–0.9 0.90 0.123 45
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simulation of streamflow. On the other hand, the GBM basin model overestimated
streamflow at the Ganges basin. For the Ganges basin, the ET correction factor was
therefore set to greater than 1.0 to increase runoff. Through sensitivity, it was found
that an ET correction factor of 1.20 yielded minimum RMSE in streamflow sim-
ulation (Table 3). Using the calibrated soil parameters, representative gridcell size,
and ET correction factor, the GBM basin model was validated for the period of
2006–10. The validation of the GBM basin model was made both qualitatively and
quantitatively.

Qualitative analyses of GBM basin model-simulated and streamflow data were
first made based on the visual inspection of the hydrographs at a particular location
of the river.F6 Figures 6 andF7 7 show the streamflow hydrographs for the Jamuna
(Brahmaputra) at Bahadurabad station and the Ganges River at Hardinge Bridge,
respectively. For the Jamuna River, the GBM basin model-simulated streamflow
was in close agreement with rated (observed) streamflow data, with underesti-
mation of the peaks. On the Ganges River, the model-simulated stream was
overestimated during peak flows during the monsoon season (Figure 7). Overall,
there was an agreement between simulated and rated streamflow data.T4 Table 4
provides a summary the quantitative analyses of the calibrated GBM basin model
during validation period using measures of efficiency, RMSE, and correlation.

4. Assessment of skill of satellite precipitation forcing data

4.1. General assessment of skill

Satellite rainfall data were used to run some specific model scenarios, since
rainfall data are the key input for hydrological modeling. The hydrological model
scenario run is referred to essentially as a hydrologic model being successively
executed several times for the same period using a specific input dataset or a
perturbation of a key variable state for each model run. In this study, two different
rainfall data products were used to prepare meteorological forcing files as an input
for GBM basin model scenario runs for the period of 2002–10. Furthermore, GBM
basin hydrological model-simulated streamflow data using different rainfall data
were analyzed with respect to rated streamflow data.

Scenario runs were performed using two different satellite rainfall data such as
CMORPH (Joyce et al. 2004; Joyce and Xie 2011), and 3B42RT (Huffman et al.
2007). These scenarios are as follows:

(i) Scenario 1: GBM basins model is run using CMORPH rainfall data.

Table 3. Quantitative analysis of GBM basin model during calibration for 2002–05.

Basin
RMSE
(m3 s21) Correlation Efficiency Remarks

Brahmaputra 13 486 0.87 0.66 Without calibration
Brahmaputra 7606 0.91 0.84 Calibration, ET correction factor,

and representative grid size
Ganges 7031 0.92 0.75 Without calibration
Ganges 6523 0.89 0.78 Calibration, ET correction factor,

and representative grid size
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(ii) Scenario 2: GBM basins model is run using 3B42RT rainfall data.

Calibrated and validated soil parameters, gridcell size, and ET correction factors
were used to run the model. For scenario runs, daily time series model simulations
were performed for the period of 1 January 2002–31 December 2010. The per-
formance of the GBM basin models was evaluated qualitatively and quantitatively.
The GBM basin model-simulated streamflows along with rated streamflows at
Bahadurabad of the Jamuna River and at Hardinge Bridge of the Ganges River are
shown in Figures 7 andF8 8, respectively. Quantitative comparison was made based
on RMSE, correlation, and efficiency of GBM basin models. These metrics are
summarized inT5 Table 5. For the Jamuna River, the GBM basin model-simulated

Figure 6. (top) Model-simulated (validated) streamflow at Bahadurabad of the
Jamuna River for the period of 2006–10 and (bottom) model-simulated
(validated) streamflow at Hardinge Bridge of the Ganges River for the
period of 2006–10.

Fig(s). 6 live 4/C
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streamflow was in close agreement with rated streamflow data, with slight un-
derestimation of the peaks (Figure 7). Although agreement was observed in the
Ganges River, the model overestimated the peaks (Figure 8). The agreement be-
tween simulated and rated streamflow data using 3B42RT rainfall data was found
for most part to be almost similar to that using gridded in situ data.

In the Brahmaputra and Ganges basins, a good correlation ranging from 0.65 to
0.80 was found between simulated and rated streamflow data for both satellite

Figure 7. Simulated streamflow using (a) CMORPH satellite precipitation data and
(b) 3B42RT satellite precipitation data at Bahadurabad station of the Jamuna
River for 2002–10.

Table 4. Independent validation of VIC model during the period of 2006–10.
‘‘Calibrated’’ is also inclusive of ET correction factor and representative grid size
selection.

Basin RMSE (m3 s21) Correlation Efficiency

Brahmaputra (calibrated) 10 918 0.92 0.82
Ganges (calibrated) 7081 0.89 0.77

Fig(s). 7 live 4/C
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precipitation scenarios (3B42RT and CMORPH). This indicated that the satellite
products have sufficient skill to follow the expected interseasonal hydrological
trends. On the other hand, the GBM basin model yielded an efficiency [see
Equation (1)] of 57% (for 3B42RT) in estimating the streamflow in the Brahma-
putra basin while the efficiency was 61% (for 3B42RT) for the Ganges basin (Table 5).
For CMORPH, the GBM basin model efficiency was 34% and 59% in the Brah-
maputra and Ganges basins, respectively (Table 5). This less than satisfactory

Figure 8. Simulated streamflow using (a) CMORPH satellite precipitation data and
(b) 3B42RT satellite precipitation data at Hardinge Bridge of the Ganges
River for 2002–10.

Table 5. Quantitative analyses of GBM basin models for different scenarios.

Rainfall data Basin Gridcell size RMSE (m3 s21) Correlation Efficiency

CMORPH Brahmaputra 0.25 18 675 0.70 0.36
CMORPH Ganges 0.125 8167 0.85 0.61
3B42RT Brahmaputra 0.25 14 399 0.80 0.61
3B42RT Ganges 0.125 7976 0.85 0.69

Fig(s). 8 live 4/C
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efficiency for CMORPH could be attributed to the estimation uncertainty of sat-
ellite rainfall data over the Brahmaputra and Ganges basins. For both satellite
precipitation scenarios, the overall efficiency was found lower in the Brahmaputra
basin than the Ganges basin potentially because of errors in the high-elevation
precipitation (snow) that dominate the surface runoff generation mechanism.

4.2. Skill assessment as a function of elevation

Skill assessment was made based on the monthly average rainfall for the satellite
precipitation products from 2002 to 2010. The in situ rainfall data from National
Climate Data Center (NCDC) or APHRODITE were used as a reference rainfall.
Error analyses of satellite rainfall data were made spatially. In this study, the total
error was defined as satellite rainfall minus reference rainfall (i.e., in situ for most
part, except for 2008–10, when 3B42V7 was used to fill missing values in station
data). The rainfall error was broken down spatially for the Ganges and Brahmaputra
basins in two elevation categories: (i) 0–1000m and (ii) more than 1000m. This
was done to assess the effect of elevation for estimating rainfall products using
satellite data (Gebregiorgis et al. 2012). The elevation categories were chosen to
also assess the impact of orographic effect on satellite rainfall estimation. The
average elevation of the Brahmaputra basin is relatively high (much greater than
1000m). On the other hand, the average elevation of the Ganges basin is relatively
low (less than 1000m). A sample spatial rainfall error map (monthly error of
3B42RT rainfall data with respect to elevation at GBM basin) is shown inF9 Figure 9.

Spatial rainfall error maps were generated for the two different satellite pre-
cipitation products from 2002 to 2010. For these two satellite rainfall products,
high and low rainfall error was observed during the monsoon season (July–October)
and the dry season (November–June), respectively. In general, during the monsoon
season, both CMORPH and 3B42RT products underestimated the rainfall in the
Brahmaputra basin, most likely because of the orographic effect in the eastern
regions of the Brahmaputra basin. Another reason could potentially be the com-
pounding effect due to extensive snow cover at higher elevations (Kamal-Heikman
et al. 2007). Gebregiorgis et al. (2012) had earlier reported that most satellite
precipitation products typically ‘‘miss’’ precipitation over regions with snow cover.
Less runoff is therefore likely to be simulated for the two satellite products. Large
positive rainfall errors are also seen in the Brahmaputra basin, which indicates the
occurrence of false precipitation (i.e., satellite estimating a nonzero rain value for a
nonprecipitating event). It is likely that this error (as false precipitation) first
propagates to a soil moisture component until the soil column reaches its maximum
holding capacity, after which the remainder of the positive error portion transfers to
the runoff process as false runoff. The Ganges basin, however, yields relatively low
rainfall error, which could be attributed to the lower elevation of the basin.

Figures 10F10 andF11 11 show observed and simulated hydrograph and hyetographs
(accumulated) for the Jamuna and Ganges River stations (or basins), respectively,
to infer the nature of error propagation. Streamflow is dependent on precipitation
amount. In these figures, the yearly accumulated rainfall was plotted against rated
and simulated streamflow to get the relationship between rainfall and streamflow.
Figure 10 indicates that yearly average accumulated rainfall was found to be around
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1400 (CMORPH) and 1850mm (3B42RT) for the Brahmaputra basin. On the other
hand, the average daily simulated streamflow was found to be 6500 (CMORPH) and
9500m3 s21 (3B42RT) for this basin. For the Ganges basin (Figure 10), yearly
average accumulated rainfall was 1450 (CMORPH) and 2000mm (3B42RT). The
average daily simulated streamflow was found to be 9700 (CMORPH) and
14 000m3 s21 (3B42RT) for this basin. For the Brahmaputra and Ganges basins,

Figure 9. Climatologic precipitation error map for (top) 3B42RT and (bottom)
CMORPH with respect to elevation divide (1000m) at the Ganges,
Brahmaputra, and Meghna basins for the month of August (averaged
over 9 years).

Fig(s). 9 live 4/C
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the average daily rated (observed) streamflow at the Hardinge Bridge and Bahadurabad
stations was observed to be 20 000 and 10 500m3 s21, respectively, which indicates
that the climatologic mismatch in the satellite-simulated and observed flows ranges
from 50% to 100%. The mismatch is considerably higher for the Brahmaputra
basin.

Figure 10. Bahadurabad (Jamuna River) rated (observed) and simulated hydro-
graph and hyetographs for (a) CMORPH satellite precipitation data and
(b) 3B42RT satellite precipitation data during 2002–10.

Fig(s). 10 live 4/C
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A more physical and detailed understanding of the uncertainty of satellite
precipitation data (and its implication in hydrologic simulation of streamflow) is
afforded by breaking down the error components into hit bias, false precipita-
tion, and missed bias. These three error components are independent and add up

Figure 11. Hardinge Bridge (Ganges River) rated (observed) and simulated hydro-
graph and hyetographs for (a) CMORPH satellite precipitation data and
(b) 3B42RT satellite precipitation data during 2002–10.

Fig(s). 11 live 4/C
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to total bias of a precipitation product (Tian et al. 2009). Recently, Gebregiorgis
and Hossain (2014b) performed a comprehensive assessment of precipitation
products of APHRODITE and satellite platforms (3B42V7 and PERSIANN),
where total bias and hit bias were found to be higher at regions of higher ele-
vation. Future studies should look into such in greater detail to identify more
ways of using precipitation data from various sources in a manner that yields
more robust simulation of streamflow.

5. Conclusions
The VIC-3L distributed (grid based) hydrologic model for the Ganges, Brah-

maputra, and Meghna (GBM) basins satisfactorily captured the streamflow dy-
namics in the lower reaches of rivers in Bangladesh. This model provided a
platform for conducting various future studies, such as satellite rainfall error
propagation, developing tools to improve precipitation estimation and to assess the
skill of climate model forecast precipitation data.

The hydrologic modeling tool (VIC4.0.6) used for the simulation of streamflow
is essentially a grid-based macroscale hydrologic model that solves full water and
energy balances. The model requires a fairly good representation of the basins of
study area. We hypothesize that some if not all of the errors in streamflow simu-
lation are due to the fact that the model considers only grids of the basins that
grossly approximate the natural terrestrial variability within a grid. In this study,
only two gridcell sizes (0.1258 and 0.2508) were considered for the GBM basin
model. Therefore, these coarse gridcell sizes may have some negative influence on
the fidelity of model forecasting. The following two issues are therefore recom-
mended for future studies:

d GBM basin hydrologic model was calibrated and validated only at the
downstream locations of the basin where rated streamflow data were
available. Internal calibration (or nested calibration) at locations midstream
and upstream of the rivers (in India) should be carried out to improve the
model’s predictability and achieve a better representation of the physical
parameters.

d The effect of gridcell size needs to be addressed more accurately in the
hydrologic model through a sensitivity analysis to identify a truly optimal
and representative size that is compatible with the skill of the forcing data.
In this study, only two scales were considered: 0.258 and 0.1258.

In conclusion, it is important at this stage to remind ourselves of the challenges
of water management in the social and hydropolitical context of the GBM basins.
There are three key issues that make the understanding of water availability and
vulnerability very important for this region. First, around the year cropping to
support the ‘‘green revolution’’ and food demand means that the fertile regions of
GBM are never left fallow with three major growing seasons (e.g., spring–
summer, summer–fall, and winter–spring). Consequently, this means that GBM
basin crop production not only depends on the monsoon rains during summer–fall
growing season but also is heavily dependent on the glacier melt and snow-fed
groundwater (deep and shallow) during the nonmonsoon growing seasons
(Byerlee 1992). Second, GBM regions, such as the low lying delta of Bangladesh,
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are most vulnerable to uncoordinated human activity in the upstream (higher
elevation) regions, such as extraction, diversion, and dam impoundment of river
waters (Mirza 2004; Mazumder 2004). Finally, frequent cyclones, accelerated sea
level rise, and Himalayan glacier retreat currently undermine the water avail-
ability and food production in the GBM basins. Recent disasters highlighting this
third point are the storm surge damages resulting from Cyclones Sidr (2007) and
Aila (2009) over the Ganges basin.

For all the above reasons, the hydrological modeling effort presented herein
using the spatially distributed VIC-3L hydrological model over the GBM basin is a
first step toward a practical means to perhaps overcoming the fundamentally in-
tractable issues of hydropolitics. The modeling technique should have a significant
impact on the economics and well-being for the 630 million inhabitants in the
region. Continuing improvement of hydrologic modeling and forecasting efforts in
the region is therefore necessary.
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