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Understanding the Dynamics of Transfer of Satellite
Rainfall Error Metrics From Gauged to Ungauged
Satellite Gridboxes Using Interpolation Methods

Ling Tang and Faisal Hossain

Abstract—Knowledge of error characteristics of high resolu-
tion satellite rainfall data at different spatial/temporal scales is
useful, especially when the scheduled Global Precipitation Mission
(GPM) plans to provide High Resolution Precipitation Products
(HRPPs) at global scales. Satellite rainfall data contain errors
which need ground validation (GV) data for characterization,
while satellite rainfall data will be most useful in the regions that
are lacking in GV data. Therefore, a critical step to bridge this
gap is to assess spatial interpolation schemes for transfer of the
error characteristics from GV regions to non-GV regions. In this
study, a comprehensive assessment of kriging methods for spatial
transfer (interpolation) of error metrics is performed. Three
kriging methods for spatial interpolation are compared, which
are: ordinary kriging (OK), indicator kriging (IK) and disjunctive
kriging (DK). Additional comparison with the simple inverse
distance weighting (IDW) method is also performed to quantify
the added benefit (if any) of using geostatistical methods. Four
commonly used satellite rainfall error metrics are assessed for
transfer to non-GV satellite gridboxes: Probability of Detection
(POD) for rain, False Alarm Ratio (FAR), bias (BIAS), and Root
Mean Squared Error (RMSE). Results show that performance of a
kriging scheme is strongly sensitive to the timescale for which the
errors are interpolated (monthly and weekly) wherein the extent
of coverage by GV data plays an equally sensitive role. While most
kriging techniques perform well according to correlation measure
at climatologic timescales for a range of GV data coverage, only
DK and OK appear to retain accuracy at the shorter timescales
(monthly and weekly). However, scalar assessment metrics such
as mean and standard deviation of error (i.e., difference between
true and interpolated errors) reveal a completely different picture
of accuracy of each interpolation method. In terms of such assess-
ment measures, the overall performance ranking of the kriging
methods is as follows: OK = DK > IDW > IK. Assessment of
kriging methods also revealed that the transfer accuracy is sensi-
tive to error metric type. The ranking of error metrics with highest
accuracy in transfer is: POD > FAR > RMSE > BIAS.
Overall, the assessment of kriging methods revealed that these
best linear unbiased spatial estimators may not be appropriate
transfer methods for transfer of satellite rainfall error metrics at
time scales shorter than a week. It is worthwhile now to pursue
more non-linear transfer methods (such as neural networks) and
other kriging methods that use additional spatial information on
the rainfall process (such as co-kriging) to further constrain the
interpolation uncertainty.
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I. INTRODUCTION

PATIAL interpolation can bridge gaps in spatial distribu-
S tion of variables that are of value for scientific or practical
applications and yet are difficult or expensive to measure. Most
spatial interpolation methods work on the principle of lever-
aging the spatial dependence (hereafter also referred to as “spa-
tial structure”) of the variable. One such class of techniques, that
are best linear unbiased estimators (BLUE), is called kriging
methods [6], [21]. These kriging methods (for a comprehensive
list, readers are referred to [2]) provide an optimal estimate of
the variable at interpolated (unsampled) locations wherein the
interpolation error is minimum at sampled locations. As such,
kriging methods have been applied to numerous spatial vari-
ables. For example, Hill et al. [8] have explored the effective-
ness of ordinary kriging for estimation arsenic contamination of
groundwater in Bangladesh for limited sampling data scenarios.
Goovaerts [5] has applied kriging for assessing lung cancer mor-
tality rates in the southeastern US. Krajewski [17] reported the
use of co-kriging to optimally merge rainfall from radar and
gauge networks. Hudson and Wackernagel [12] used kriging for
spatial interpolation of temperature in Scotland. Ma et al. [20]
have assessed kriging methods in the field of groundwater mod-
eling in southcentral Kansas. Theodossiou and Latinopoulos
[25] have demonstrated the use of kriging methods for interpo-
lation of ground water levels. There are numerous other studies
that report the use of kriging for spatial interpolation.

One area where kriging methods have not experienced any
assessment, to the best of our knowledge, is the error of satellite
estimated rainfall (hereafter “error” is also interchanged with
“uncertainty”). Ever since rainfall products began to be devel-
oped using satellite infrared sensors on geostationary orbit three
decades ago, satellite remote sensing of rainfall has experienced
tremendous progress [4]. In recent times, satellite rainfall es-
timation has seen significant improvement in resolution both
spatially and temporally [23]. From typical resolutions of de-
gree-daily in the 1980s (such as the Global Precipitation Clima-
tology Project (GPCP) [15]; see also [27]), current high resolu-
tion precipitation products (HRPP) now provide satellite rain-
fall estimates using a variety of sensors and platforms at typical
scales of 25x 25 km every 3 hours across the globe. A few ex-
amples of such products are CMORPH [16], Tropical Rainfall
Measuring Mission (TRMM) Multisatellite Precipitation Anal-
ysis (TMPA) [14], and GSMap [26]. A few other products also
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Fig. 1. The set of squares on the left side show the conceptual rendition of the idea of ‘transfer’ of satellite rainfall error information from a gauged (GV) location
to an ungauged (non-GV) location (modified from [24]). Upper panels depicts the notion of ‘error’ of satellite rainfall data (in this case, the scalar deviation of
magnitudes is termed ‘error’ although there can be many other types of error). Lower panel depicts how the known error (derived from GV sites shown in red in
the middle panel) would be ‘transferred’ to the non-GV (ungauged) sites shown in blue (right most panel). To connect the concept of spatial transfer of satellite
rainfall error globally, map with location of ground validation gauges is shown using similar colors.

provide routine rainfall data at much smaller resolutions of 30
min 4x4 km, such as PERSIANN [1].

NASA'’s planned Global Precipitation Measurement (GPM)
mission, in collaboration with other international partners, rep-
resents the follow-on mission to the highly successful TRMM.
GPM is a unique constellation of rain measuring satellites
centered around a core satellite comprising a high-resolution,
multi-channel passive microwave (PMW) rain radiometer
known as the GPM Microwave Imager (GMI) and augmented
by the Dual-frequency Precipitation Radar (DPR) [11]. GPM
is currently scheduled for launch in 2013. GPM will seek to
achieve measurements with a 3-hr average revisit time over 80%
of the globe, and it is expected to provide global high-resolution
precipitation products (HRPP) with temporal sampling rates
ranging from 3 to 6 hours and spatial resolution of 25-100 km?
(for more information, refer to http://gpm.gsfc.nasa.gov). If
satellite rainfall data continues to witness the improvement it
has experienced in recent times, then it is reasonable to expect
within the next five years, global availability of more coherent
satellite rainfall datasets at scales of interest to a variety of
users. Hence, knowledge of the distribution of error will be
important in dictating the proper use of satellite rainfall data
[9].

What therefore makes the assessment of spatial interpolation
techniques, such as kriging, for transfer of satellite rainfall error
worthwhile is the general lack of ground validation (GV) rain-
fall information around the world to characterize error directly
for every satellite gridbox. Fig. 1 (modified from [24]) concep-
tually demonstrates this concept for the spatial transfer of satel-
lite rainfall error and places it in the context of the global land
areas. Given the general sparseness of GV rainfall data around
the world (as seen from Fig. 1, rightmost panel), most locations
(satellite gridboxes) would need to have an “estimate” of the
satellite rainfall error because of the impossibility to “measure”
the error against information from ground sources. Hence, an
effective spatial transfer scheme to interpolate the error at these
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Fig. 2. The general concept of spatial interpolation at unsampled (non-GV) lo-
cations (shown in red) on the basis of sampled (known or GV) locations (shown
in green). The estimate of error at the non-GV location would be a weighted
function of the errors at the GV locations nearby (shown through arrows).

(unsampled) non-GV gridboxes (the white regions of Fig. 1)
on the basis of known (sampled) error at nearby GV gridboxes
(Fig. 2) would be useful for various users of satellite rainfall
data.

But why is information of satellite rainfall estimation un-
certainty useful and who may be the biggest beneficiaries of
this information? Among the various uses, hydrologic appli-
cation over land, water management and crop yield forecast
will comprise a major avenue through which current and fu-
ture (GPM) multi-sensor satellite precipitation products will be
able to demonstrate tangible benefits to society. In particular,
the global nature of coherent and more accurate satellite pre-
cipitation products offer hydrologists tremendous opportunities
to improve flood monitoring in medium-to-large river basins
where rainfall is abundant but in situ measurement networks
are generally inadequate. Similarly, existing multi-sensor prod-
ucts such as the TRMM Multi-satellite Precipitation Analysis
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(TMPA) product 3B42RT is already used in forecasting of crop
yield [22] and famine outbreak [3]. A knowledge of uncertainty
of a specific rainfall product can therefore guide the user to-
wards optimal choice of scale and application. For example, a
high probable bias would inform a user that the crop yield fore-
cast is likely to be severely overestimated. Similarly, low prob-
ability of detection of rain is likely to underestimate and even
miss the peak flow for a satellite rainfall based flood forecasting
system.

This study builds on two earlier works of Tang and Hossain
[24] and Tang et al. [28]. Tang and Hossain [24] demonstrated
a proof of concept of the application of ordinary kriging for
spatial transfer of satellite rainfall error metrics. However, the
demonstration was for a rather optimistic scenario at the sea-
sonal timescale using six-year climatologic average (where the
spatial dependence and correlation lengths are highest) and as-
suming only 50% of a region as “gauged” (i.e., having access to
GV data). The study also used correlation measure as the assess-
ment metric. The follow-up study by Tang et al. [28] revealed
that the use of correlation measure as an assessment metric for
the accuracy of kriging may be inadequate. However, their study
assessed only ordinary kriging.

In this study, various kriging methods are therefore assessed
for transfer of error metrics for a range of GV data coverage
(from 10% to 90% gauged) and timescales using non-correla-
tion type measures. Three kriging spatial interpolation methods
are compared: ordinary kriging (OK), indicator kriging (IK),
and disjunctive kriging (DK). The simple and common method
of inverse distance weighting (IDW) is also assessed as a
“control” method to understand the added benefit (if any) of
using such BLUE methods. Because each kriging method
has strengths and weaknesses due to assumptions that are
inherent, the goal is to understand how each method performs
and identify if there exists a “best” technique for a particular
scenario. It is also hypothesized that the spatial structure of an
error metric may also be dependent on the temporal scale of
averaging. For example the satellite bias averaged over a month
will likely have much longer spatial correlation lengths as that
for bias averaged over a week. Yet, the transfer of satellite
rainfall error may need to be performed at various time scales
depending on the needs of the user, distribution of GV data and
the operational frequency of satellite rainfall data.

The paper is organized as follows. Section II presents study
domain and data while Section III presents kriging methods.
Section IV provides details on the experimental set-up used for
assessment of the interpolation methods. The results and discus-
sion of the application of the kriging methods and IDW are pre-
sented in Section V, followed by conclusions in Section VI. The
Appendix provides the mathematical formulation of the error
metrics used in this study.

II. STUDY REGION AND DATA

The study region for assessing kriging methods was the Cen-
tral United States (US) comprising the Great Plains and the Mid-
west. The geolocation of the four corners of this region are pro-
vided in Table I. We chose this region because of the availability
of quality controlled GV rainfall data. In addition, the region
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Fig. 3. Study region in the US comprising the Great Plains and the Midwest
(shown inside the box). The background colors represent the climate classifica-
tion according to the Koppen system.

TABLE 1
GEOLOCATION OF THE FOUR CORNERS OF THE STUDY REGION WHERE
KRIGING METHODS WERE ASSESSED

Longitude (West) Latitude (North)
Upper left corner -104.5 43.5
Upper right corner -88.25 43.5
Lower left corner -104.5 33.5
Lower right corner -88.5 33.5

exhibits diverse climates and rainfall systems for testing spa-
tial interpolation schemes (see Fig. 3 on Koppen climates of the
study region). The convective season of the Plains ranges be-
tween May and September. Because of the contrasting air mass
in this zone, it has frequent severe thunderstorms and tornado
outbreaks during spring and summer. Maximum precipitation
generally occurs in late spring and early summer. The GV rain-
fall data pertained to the ground radar network in the US. In
order to minimize the error of the GV data in our investigation,
we used the National Center for Environmental Prediction’s
(NCEP) 4 km Stage IV NEXRAD (ground radar) rainfall data
that is adjusted to GV gauges over the US [19]. NASA’s TMPA
satellite rainfall data-product labeled as 3B42RT was used as
the satellite rainfall data [14]. This product is globally avail-
able on a near real-time basis at 0.25 degree (~25% 25 km near
equator) and 3-hourly resolution from the world-wide web (see
ftp://trmmopen.gsfc.nasa.gov). This satellite dataset uses raw
radiances from two types of sensors (and orbits): passive mi-
crowave (PMW) sensors (low earth orbit) and infrared (IR) sen-
sors (geostationary orbits). For recent upgrades in the 3B42RT
algorithm, the reader is referred to Huffman ez al. [13]. The data
for GV and satellite rainfall data spanned the period of June-
July-August of 2007 (three months). A point to note is that there
also exists research-grade satellite product 3B42 (V6) that is
produced by NASA retrospectively by adjusting the bias using
gage rainfall. In this study, the focus was on testing the concept
of spatial transfer in the operational mode using real-time (RT)
products and hence 3B42V6 was not used.
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III. KRIGING METHODS

A. Basic Concept

Because kriging methods have a long heritage of develop-
ment and use, and because readers can refer to comprehensive
geostatistical textbooks (such as [2] and [6]), a very brief intro-
duction of the general kriging as a BLUE method is provided
herein. This is followed by a concise description of each type of
kriging method used by highlighting only the major difference
or assumption behind its formulation.

Kriging is basically an estimator used to find the best linear
unbiased estimate of a second-order stationary random field
with an unknown constant mean as follows:

Z(wo) = Z)\7Z(lz) ey
im1

where Z (zp) is the kriging estimate at unsampled location
%o, Z{x;) is the sampled value at location x;, and A; is the
weighting factor for 7 (x;).

The estimation error is

Z(x9) — Z(wo) = R(wo) = _Z M (i) — Z(mo)  (2)

where Z () is the unknown true value at g and R(zq) is the
estimation error. For an unbiased estimator, the mean of the es-
timation error must equal zero. Therefore,

E{R(z0)} =0 3)

and
4)

As a BLUE technique, the estimator must also have min-
imum variance of estimation error. The minimization of the
estimation error variance under the constraint of unbiasedness
leads to a set of simultaneous linear algebraic equations for the
weighting factors, A;, which can be solved by an optimization
routine and the method of Lagrange multipliers. A major step
in any kriging method is the estimation of the semi-variogram
model parameters such as correlation length, sill and nugget
variance. A semi-variogram represents the spatial dependence
of the variable being interpolated. In this study, the semi-vari-
ogram was modeled as an exponential type function (discussed
in Section IV).

B. Ordinary Kriging

The general method outlined in Section III-A is essentially
for Ordinary Kriging (OK) and hence is not repeated here.

C. Indicator Kriging

Indicator Kriging (IK) makes no assumption of normality
(unlike OK)) and is essentially a non-parametric counterpart to
OK. However, like OK, the correlation between data points de-
termines weights A in (1) with the help of the semi-variogram.
Instead of working directly with the variable, IK works with “in-
dicator” variables based on threshold values. These threshold

values, referred as IK cutoffs, are used to numerically build the
distribution of the estimation point. For each IK cutoff, data in
the neighborhood are transformed into Os and 1s: Os if the data
are above the threshold, and 1s if they are below. IK then esti-
mates the probability that the estimation point is less than the
threshold value, using this transformed data and a variogram
model of the IK cutoff correlation structure. The final output
from IK is a spatial map indicating exceedance probability for
a threshold at each point/gridbox (which can then be converted
back to the variable value within a given range of thresholds).
Median IK uses median cutoff (such as 0.5) for indicator co-
variance. In this paper, we used nine cutoffs (from 0.1 to 0.9).
This was based on preliminary sensitivity studies to identify the
optimal number of cutoffs that led to the highest accuracy in in-
terpolation.

D. Disjunctive Kriging

The main highlight of Disjunctive Kriging (DK) is that it
is a nonlinear procedure in which the original dataset is trans-
formed using a series of additive functions, typically Hermite
polynomials, using the semi-variogram of the Gaussian trans-
formed values. DK is also designed for kriging of non-normal
data. When the weight function is linear and the random func-
tion is multivariate normal, the DK method is the same as the
OK method. OK can be considered a special case of the more
general DK method.

E. Inverse Distance Weighting

The Inverse Distance Weighting (IDW) is not a BLUE or a
geostatistical method. Essentially, the weights A in (1) are de-
rived as proportional to the inverse of the squared distance be-
tween the sampled and unsampled point. In this study, the same
set of gridboxes used for kriging methods was used for the IDW
method.

IV. ASSESSMENT SET-UP

A. Selection of Satellite Rainfall Error Metrics

In general, satellite rainfall error can serve two purposes: 1) to
aid algorithm developers to improve their products and under-
stand how individual products could be merged, and 2) to aid
users in understanding if the particular product is right for them.
This study addressed the latter purpose. Because different users
have naturally different needs, it is important to assess a range
of error metrics. Furthermore, the spatial structure of each error
metric is expected to be unique at a given space-time scale.
For example, according to previous research [7], [10], [29], hy-
drologist users engaged in flash flood or monsoonal flood fore-
casting benefit more from the knowledge on error metrics such
as probability of detection for rain (POD-rain) to understand
the accuracy in estimating peak flow, false alarm ratio (FAR)
to understand the probable frequency of false alarms in flood
warnings and bias (BIAS) to minimize under/over estimation in
river stage. On the other hand, crop yield and famine forecasters
focus more on the monthly rainfall estimation bias during the
growing season as the important indicator of reliability to fore-
cast crop growth (from personal communication with Dr. Chris
Funk of the Famine Early Warning System). Hence, the error
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Fig. 4. Map showing kriging weight coefficients [i.e., weighting factors A in
(1)] for interpolation of monthly BIAS at the red (non-GV) satellite grid box.
Here each grid box is 0.25° and the correlation length for monthly BIAS is about
five grid boxes (~125 km). The entire study domain (comprising 65 x 40 grid-
boxes) was used for kriging assuming 50% of the region was gauged (sampled).
Thus, almost all the non-zero kriging weighting coefficients are located within
two correlation length radius around the non-GV gridbox.

metrics chosen for assessment in this study are: 1) BIAS, 2)
root mean squared error (RMSE), 3) POD-rain, and 4) FAR.
The mathematical formulation of each error metric is provided
in the Appendix. Hereafter the term POD will refer to POD-rain.

B. Kriging Application

Spatial correlograms were derived for each error metric and
the correlation length (CL), where the autocorrelation dropped
to 1/e (e-folding distance), was then computed. Next, the empir-
ical semi-variograms were derived and then idealized as expo-
nential semi-variogram functions prior to the kriging interpola-
tion as follows:

y(h) = co+e(l—e /) )
where v(h) is the semi-variance at spatial lag h; ¢g represents
the nugget variance (i.e., the minimum variability observed or
the noise level at the smallest separating distance equals 0; ¢
is the sill variance—when spatial lag is infinite; and « is the
correlation length.

To keep the matrix computations for kriging efficient, the spa-
tial interpolation was performed using a smaller square-sized
window around the ungauged satellite grid box rather than the
entire collection of gauged gridboxes spanning the whole study
domain. The sides of this squared window were set to two cor-
relation length of the error metric being transferred. Preliminary
analyses has shown that such a moving window based kriging
is justified as the interpolation weights due to gridboxes farther
than two correlation lengths from the unsampled gridbox are
negligible (see Fig. 4 for monthly timescale using OK to transfer
BIAS).

C. Experimental Set-Up to Assess Kriging Methods

Two key aspects of kriging were assessed in this study: 1) spa-
tial aspect and 2) temporal aspect. In the spatial aspect, the goal
was to investigate the effectiveness of kriging as a function of
relative gaugedness of a region (in other words, the percent of

gridboxes having access to GV data). It is expected that the ac-
curacy of kriging at unsampled gridboxes would be lower for a
region that was less relatively gauged than one with higher per-
centage of GV gridboxes. However, this relationship needs to
be quantified for each error metric. In the temporal aspect, the
goal was to understand the effectiveness of kriging as a function
of the timescale of averaging for the error metrics. For example,
error metrics were averaged for periods comprising monthly and
weekly. As timescales shortens, it is intuitive to expect more
randomness in the spatial organization of the error metric (i.e.,
lower correlation length). A monthly averaged BIAS (for the
summer season) will probably have much smoother error field
than a weekly averaged BIAS field for the same summer month.
It is important therefore that the effectiveness of kriging is un-
derstood also as a function of the timescale of averaging of the
error metric. As GPM becomes operational, different users will
have needs at different timescales, and hence the temporal as-
pect of the effectiveness of kriging is useful.

Firstly, for any scenario, the true field of error metrics at each
grid box was derived using actual satellite and GV data, which
was then used as the reference for assessment of kriged esti-
mate of error metrics. For the spatial scenario, it was assumed
that only X% of the region’s gridboxes had access to GV rainfall
data (i.e., “gauged”). The semi-variogram was modeled on the
basis of these X% of grid boxes where the true error metric was
known (or measured) a priori. Kriging was then implemented
to estimate error metrics over the remaining (100X)% of the
ungauged gridboxes (lacking in GV data). This was similar to
a data withholding exercise. Selection of the gauged gridboxes
was random and hence each kriging realization was repeated 10
times for each X% of GV data in a Monte Carlo (MC) fashion
to derive an average assessment. Kriging was assessed for each
“gaugedness” scenario by having X% systematically increased
from 10% to 90% and the kriging experiment repeated. As noted
earlier, that the true field for an error metric was known a priori
for the entire study domain, and hence the accuracy of kriging
could be directly assessed at the “unsampled” gridboxes. The as-
sessment of accuracy used measures such as correlation, mean
error, and standard deviation of error. Assessment error was de-
fined for each non-GV gridbox where kriging was applied as
follows:

Asscssment Error = (Interpolated Error Metric
—True Error Metric)/(True Error Metric).  (6)

Next, this assessment error was averaged for each scenario (%
gauged)

Mean Assessment Error
= Mean of Assessment Error
(as defined above in Eqn 6)over all non — GV
gridboxes where interpolation was applied 7)
Std. Dev. of Assessment Error
= Standard Deviation of Assessment Error
(as defined in Eqn. 6) over all non-GV gridboxes

where interpolation was applied.

®)
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Fig. 5. Example of interpolated error field for the error metric BIAS at the monthly timescale (June 2007) assuming 50% of the study domain as gauged. Upper
left panel: ordinary kriging; upper right panel: indicator kriging; middle left panel: disjunctive kriging; middle right panel: inverse distance weighting; lower left
panel: true error field (derived from NEXRAD GV data); lower right panel: monthly averaged rainfall field for June 2007 according to TRMM monthly data. Units

are in mm/hr.

V. RESULTS AND DISCUSSION

Fig. 5 shows an example of application of kriging methods
to estimate BIAS for a 50% gauged scenario (i.e., study do-
main having 50% of gridboxes access to GV rainfall data) at
the monthly timescale. Comparing the estimated error field with

that of true error and rainfall field reveals that all the kriging as
well as IDW methods show promise in transferring BIAS from
GV to non-GV regions. Qualitatively, it seems that these spatial
interpolation methods are more effective over areas where rain-
fall varies smoothly. The statistical analysis for each method is
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Fig. 6. Performance of kriging methods as a function of error metrics (different colored lines), timescales (left panel: monthly averaged error for June 2007; right
panel: weekly averaged error for the first week of June 2007) and % of non-GV grid boxes (shown in x-axis).

provided in the following to identify the relative performance
of each method.

Fig. 6 shows the performance of kriging methods as a
function of error metrics (different colored lines), timescales
(left panel: monthly averaged error; right panel: weekly aver-
aged error) and % of non-GV grid boxes (shown in x-axis).
The month of June 2007 is used for demonstration of this
performance. For each timescale scenario, the error metrics
POD, FAR, BIAS, and RMSE were first averaged accordingly
(monthly average for June 2007 or weekly average for the first
week of June 2007). The true error field was known a priori for
the entire study domain since all the gridboxes in reality had
access to GV rainfall data. Next, a data withholding exercise
was carried out assuming X% of the study region’s gridboxes

as being non-GV, where X was increased from 10% to 90% in
increments of 10% (shown in x-axis). For each X% scenario,
ten MC kriging realizations based on ten random sampling of
(100X) % of GV gridboxes were carried. The y-axis represents
the average (of the 10 MC realizations) correlation measure
between error estimated by kriging and the true error at the
X% of gridboxes. As expected, the accuracy of interpolation
decreased as the % of the domain being “ungauged” increased.
The general trend evident from Fig. 6 is that, using corre-
lation as the assessment measure, there are no significant dif-
ferences in performance observed across various interpolation
methods. IDW performance is as similar as the kriging methods
and the added benefit of using a more complex geostatistical
method is also not apparent. At the weekly timescale, interpola-
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Fig. 8. Histogram estimated errors (from interpolated methods) and true error (measured from actual GV data) at the monthly timescale for the month of June

2007.

tion methods register only slightly lower correlation compared
to monthly averaged error metrics. However, a clearer trend is
observed when performance is scrutinized as a function of error
metrics. The metric FAR appears to have the least accuracy in
transfer followed by POD. When summarized over the range of
10%-90% of the domain as shown in Fig. 7, it is seen that the
ranking of performance of kriging methods according to corre-
lation measure is as follows: OK = DK > IK. At the weekly
timescale, the difference in performance is significantly dimin-
ished.

Fig. 8 shows the histogram (pdfs) for various kriging
methods and IDW at the monthly timescale for the month of
June 2007 as an example. The histograms are averaged over
the range of 10%-90% of the study domain missing in GV
data. The unbiased nature of the kriging methods as well IDW
is apparent from this figure. However, IDW is seen to have the
histogram that deviates most from that of the true error, while
other kriging methods show a much closer match. For BIAS,
the performance of interpolation methods can be clearly ranked
as follows: DK > OK > IK > IDW.
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TABLE IlI(a)
ASSESSMENT OF THE TRANSFER OF ERROR METRICS AT MONTHLY TIME SCALES (FOR SUMMER MONTH OF JULY 2007)

Method | % of BIAS RMSE PODin FAR
region
lacking
GV
data
OK Mean Std. Mean Std. Mean Std. Mean Std.
Error Dev of | Error Dev Error Dev of | Error Dev of
Error of Error Error
Error
10 0.54 0.71 0.20 0.20 0.16 0.15 0.32 0.43
20 0.64 0.98 0.22 0.22 0.17 0.18 0.27 0.31
30 0.67 0.98 0.22 0.21 0.16 0.19 0.28 0.32
40 0.61 0.85 0.23 0.24 0.18 0.22 0.31 0.41
50 0.67 1.01 0.25 0.24 0.18 0.21 0.31 0.39
60 0.72 1.09 0.26 0.27 0.17 0.19 0.32 0.40
70 0.80 1.13 0.26 0.24 0.19 0.24 0.33 0.44
80 0.87 1.32 0.30 0.34 0.21 0.25 0.35 0.48
90 0.99 1.46 0.33 0.34 0.24 0.30 0.39 0.51
DK Mean Std. Mean Std. Mean Std. Mean Std.
Error Dev of | Error Dev Error Dev of | Error Dev of
Error Oof Error Error
Error
10 0.57 0.79 0.19 0.20 0.17 0.19 0.31 0.40
20 0.61 0.79 0.22 0.19 0.17 0.17 0.30 0.38
30 0.68 0.92 0.24 0.24 0.18 0.20 0.31 0.38
40 0.69 0.88 0.22 0.22 0.18 0.21 0.29 0.38
50 0.71 1.05 0.22 0.21 0.18 0.21 0.30 0.37
60 0.71 1.04 0.27 0.27 0.19 0.24 0.34 0.46
70 0.75 1.08 0.29 0.30 0.20 0.21 0.33 0.42
80 091 1.42 0.31 0.33 0.21 0.25 0.33 0.43
90 2.46 7.82 0.36 0.35 0.26 0.32 0.41 0.55
IK Mean Std. Mean Std. Mean Std. Mean Std.
Error Dev of | Error Dev Error Dev of | Error Dev of
Error of Error Error
Error
10 0.57 0.75 0.24 0.23 0.17 0.16 0.34 0.44
20 0.69 1.04 0.26 0.25 0.17 0.17 0.29 0.33
30 0.70 1.00 0.24 0.21 0.17 0.19 0.29 0.33
40 0.66 0.89 0.26 0.25 0.19 0.22 0.32 0.40
50 0.72 1.05 0.27 0.25 0.19 0.21 0.32 0.38
60 0.77 1.18 0.28 0.27 0.18 0.19 0.33 0.38
70 0.84 1.15 0.28 0.25 0.20 0.22 0.34 0.40
80 0.90 1.33 0.31 0.30 0.21 0.23 0.36 0.45
90 1.05 1.51 0.35 0.28 0.24 0.24 0.38 0.43

In order to demonstrate a more rigorous level of accuracy
of the interpolation methods beyond the correlation measure,
Tables II(a) and II(b) show the mean assessment error and stan-
dard deviation of assessment error [(7) and (8), respectively] for
the month of July 2007. Unlike correlation measure, the mean
and standard deviation of error indicate a more revealing pic-
ture on the accuracy of the kriging methods. The error metric
BIAS has the lowest accuracy for both monthly and weekly time
scales. On the other hand, POD followed by RMSE and FAR
have the highest accuracy for transfer of error metrics at both
timescales according the mean assessment error measure. As
expected, the precision of the kriging based transfer scheme de-
grades at shorter timescales. At very low GV coverage (<20%),
the standard deviation of transfer error becomes high (>100%),
indicating low reliability in the kriging methods regardless of
the timescale at which the uncertainty metrics are transferred.
Across methods, OK seems to be the best of the kriging methods
where performance accuracy does not degrade as much as other

methods when access to GV data decreases. The DK method, on
the other hand, appears very unstable when GV coverage is very
low with mean and standard deviation of assessment error dou-
bling from 80% to 90% missing GV data scenario [Tables II(a)
and II(b)].

The previous results were examples for a specific month
(June or July) or a specific week (first week of June or July).
Fig. 9(a) and (b) provide a generalization of the findings by
presenting the performance of the interpolation methods aver-
aged over the entire study period spanning June-July-August
0f 2007. These figures corroborate the major conclusions made
so far, but present a much clearer picture. For example, both
Fig. 9(a) and (b) show that the error metric POD has the least
assessment error followed by FAR, RMSE, and BIAS. POD
also has the least “spread” in estimation of error. This indicates
that POD can be spatially transferred with the highest level of
reliability and precision when compared to other common error
metrics. The two figures also clearly show the added benefit of
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TABLE II(b)

ASSESSMENT OF THE TRANSFER OF ERROR METRICS AT MONTHLY TIME SCALES (FOR THE FIRST WEEK OF JULY 2007)

Method | % of BIAS RMSE POD,, FAR
region
lacking
GV
data
OK Mean Std. Mean Std. Mean Std. Mean Std.
Error Dev of | Error Dev Error Dev of | Error Dev of
Error of Error Error
Error
10 0.75 1.14 0.62 1.05 0.27 0.26 0.32 0.30
20 0.81 1.15 0.54 0.90 0.29 0.27 0.32 0.27
30 0.78 1.22 0.60 1.09 0.31 0.31 0.37 0.34
40 0.87 1.27 0.63 1.09 0.31 0.32 0.36 0.35
50 0.84 1.17 0.64 1.05 0.30 0.30 0.38 0.36
60 0.85 1.11 0.71 1.24 0.31 0.31 0.37 0.38
70 1.03 1.40 0.71 1.22 0.33 0.33 0.40 0.34
80 0.89 1.10 0.80 1.25 0.34 0.36 0.39 0.37
90 1.05 1.30 0.80 1.25 0.37 0.40 0.42 0.41
DK Mean Std. Mean Std. Mean Std. Mean Std.
Error Dev of | Error Dev Error Dev of | Error Dev of
Error of Error Error
Error
10 1.06 1.56 0.85 1.98 0.28 0.28 0.34 0.26
20 1.15 1.71 0.86 1.96 0.29 0.29 0.36 0.32
30 1.18 1.74 0.97 2.39 0.29 0.30 0.36 0.31
40 1.29 2.08 1.02 2.28 0.29 0.28 0.36 0.31
50 1.36 2.08 1.04 247 0.30 0.32 0.38 0.32
60 1.38 2.14 1.05 2.84 0.32 0.34 0.39 0.36
70 1.44 2.19 1.06 3.19 0.32 0.32 0.41 0.43
80 1.61 2.34 1.66 5.88 0.37 0.39 0.43 0.39
90 1.62 2.66 2.37 8.69 0.39 0.39 0.43 0.38
1K Mean Std. Mean Std. Mean Std. Mean Std.
Error Dev of | Error Dev Error Dev of | Error Dev of
Error of Error Error
Error
10 0.79 1.11 0.62 0.89 0.35 0.29 0.49 0.35
20 0.86 1.18 0.61 0.78 0.35 0.30 0.46 0.32
30 0.85 1.15 0.62 0.83 0.36 0.31 0.50 0.36
40 0.91 1.22 0.70 1.00 0.36 0.32 0.48 0.38
50 0.90 1.17 0.67 0.90 0.36 0.32 0.51 0.38
60 0.93 1.14 0.69 1.01 0.37 0.31 0.50 0.37
70 1.06 1.38 0.70 1.00 0.38 0.30 0.51 0.34
80 0.93 1.09 0.76 1.06 0.40 0.33 0.48 0.34
90 1.07 1.26 0.73 1.06 0.44 0.37 0.57 0.37

using a more complex kriging method, as IDW is observed to
have the highest interpolation uncertainty both in terms of the
systematic (mean assessment error) and random nature (i.e., the
standard deviation of assessment error shown as vertical error
bars) at non-GV gridboxes.

VI. CONCLUSION

Although this study has presented several assessments, the

key findings can be summarized as follows:

1) Correlation measure as an assessment metric for quanti-
fying accuracy of interpolation methods for satellite rain-
fall error is largely inadequate. Any spatial transfer method
should make use of scalar assessment measures such as
mean and standard deviation of the difference between true
and interpolated error metric.

2) There exists added benefit of using the more complex geo-
statistical methods of kriging as inverse distance weighting

method yielded the highest mean and standard deviation of
assessment error.

3) Although performance of disjunctive and ordinary kriging

is similar, ordinary kriging is seen to be the better method
across a range of scenarios of missing GV data and
timescales. In general, indicator kriging (IK) is found to
be the least effective of the three kriging methods studied.

4) Spatial transfer is strongly sensitive to the extent of

gaugedness of the application domain. At weekly
timescales, the assessment error is found to be almost
twice as that of monthly timescale for the same percentage
of a region having access to GV gridboxes.

5) Spatial transfer is found to be strongly sensitive to the error

metric type with the highest accuracy in transfer observed
for POD, followed by FAR, RMSE, and lastly BIAS. This
indicates that in an operational setting, BIAS should be
avoided for transfer from GV gridboxes, while POD can
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Fig. 9. (a) Statistical average of mean and standard deviation of assessment errors over the entire study period spanning the 3 months of June-July-August of
2007 at the monthly timescale. The error bars indicate the standard deviation of assessment error averaged over the 3 months. (b) Statistical average of mean and
standard deviation of assessment errors over the entire study period spanning the 12 weeks of June-July-August of 2007 at the weekly timescale. The error bars
indicate the standard deviation of assessment error averaged over the 12 weeks.

probably be estimated at non-GV gridboxes with high ac-
curacy.

The sobering finding from this study is that best linear unbi-
ased spatial estimators may not be appropriate transfer methods
for satellite rainfall error metrics at timescales of a week or
shorter due to high interpolation errors. A more flexible kriging
based scheme proposed by Jolly et al. [18], for efficient spatial

interpolation of meteorological variables, may be worth pur-
suing as a future extension of this work. It is also worthwhile
now to pursue more nonlinear transfer methods (such as neural
networks) and other kriging methods that use additional spatial
information (such as co-kriging) on the rainfall process and ter-
rain to further constrain the prediction uncertainty [17].
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TABLE III
CONTINGENCY TABLE
(A HIT 1s DEFINED WHEN BOTH SATELLITE AND GV RAINFALL DATA
AGREE ON THE TYPE OF EVENT DETECTED; A MISS 1S WHEN THERE IS
DISAGREEMENT BETWEEN SATELLITE AND GV DETECTED EVENTS)

Truth/Reference
Rainy Gridboxes ~ Non-rainy Gridboxes
wv
% Na (HIT) Np (MISS)
£
&
]
E N¢ (MISS) Np (HIT)
©
wv

In closing, given our current state of understanding, we be-
lieve that the operational scheme for “spatial transfer” of error
metrics from gauged to ungauged regions should be able to per-
form the following two types of transfer: 1) for regions which
have large voids of fixed-point GV data such as the tropics,
transfer error on the basis of dynamic updates using more ac-
curate satellite sensor data such as TRMM Precipitation Radar
(PR) scans as a proxy for GV; 2) for regions having smaller
voids in the fixed-point GV data such as in higher latitudes,
transfer error on the basis of the stationary GV data (such as
NEXRAD Stage IV for the US). The transfer scheme will need
to automatically select the most appropriate technique and yield
an error field comprising the calculated error over GV regions
and the transferred error over non-GV regions. Users around the
world would prefer to have a clear understanding of the pros and
cons of applying satellite rainfall data for terrestrial applications
at a given scale. Although spatial interpolation methods such as
kriging have merit for such an effort, much work needs to be
done to develop a transfer method that can work effectively at
timescales shorter than a week in an operational setting for the
Global Precipitation Measurement (GPM) mission.

APPENDIX
FORMULATION OF UNCERTAINTY METRICS

Consider the 2 x2 contingency table, Table III, of hits and
misses associated with satellite rainfall estimates.

Then the error metrics of probability of detection for rain
(POD-rain) and False Alarm Ratio (FAR) are defined as follows:

Na
POD-rain: ———— A.l
rain Nat Vg (A.1)
Ng
FAR: ———. A2
Np + Ny (A-2)

Bias is computed as the average of errors in a monthly or weekly
period over the study domain as follows:

N

. 1
Bias = N Z(E - X))

£ 3
=1

(A3)

where Y; is satellite rainfall and X; is the corresponding GV ob-
servation of rainfall. N is the number of data in the time period
(in a month or a week).

RMSE measures the magnitude of error, giving greater
weight to the larger error:
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