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The main objective of this study is to assess the impact of using different initiali-
zation techniques and cloud microphysics of a numerical atmospheric model to
improve the forecasting of Indian summer monsoon rainfall (ISMR). A total of six
intense precipitation events over the Ganges–Brahmaputra–Meghna (GBM) and
Indus River basins were tested to identify the most suitable combination of param-
eterization and initialization techniques. The global forecast system (GFS)-based
numerical weather prediction (NWP) forecast fields were dynamically downscaled
by the mesoscale model of weather research and forecasting (WRF). The perfor-
mance of four types of initial conditions with three cloud microphysics was
assessed using a model resolution of up to 9 km. A main conclusion is that the
model initialized using hot start in the study involves more uncertainty, probably
due to poor-quality data assimilation, and it cannot exceed the performance of
cold-start initialization. The study findings provide evidence that the finer resolu-
tion initial condition is promising in higher resolution models. In the case of cloud
microphysics, the performance of WRF single moment 5 class (WSM5) was suffi-
cient for South Asian monsoon systems within this scale of the model resolution.
The findings provide a general guideline for flood forecasters for the WRF model
set-up for forecasting the ISMR from publicly available GFS-based NWP forecast
fields.
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1 | INTRODUCTION

The economies of South Asia are predominantly agrarian
with a significant dependence on monsoon rainfall (Molden,
2007). The high population density in most of the South
Asian river basins (e.g. the Ganges, Brahmaputra and Indus)
makes the situation more complex (Kale, 2012). Flooding
in such river basins causes substantial damage to lives and
properties. For example, a widespread flood in the Ganges
basin caused by monsoon rainfall in 2007 killed over 2,000
people and displaced about 20 million (Dulal, 2014). There-
fore, understanding and prediction of monsoon rainfall are
very important for this region.

Predicting monsoon rainfall is complicated because of
the irregular characteristics of the monsoon in the tropical
cycle (Dwivedi, Mittal, & Goswami, 2006). Numerous stud-
ies have been conducted to understand the monsoon system
better. Such studies have explored how to predict ahead of
time (hereafter referred to as “forecasting”) the timing and
intensity of the Indian summer monsoon rainfall (ISMR).
Many of these studies typically use a global numerical
weather prediction (NWP) model as the primary tool
(e.g. Bhaskaran, Jones, Murphy, & Noguer, 1996; Medina,
Houze Jr, Kumar, & Niyogi, 2010; Srinivas et al., 2013).
Such a NWP is perhaps the only plausible option for fore-
casting rainfall by piecing together the fundamental building
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blocks of weather-prediction variables that lead to precipita-
tion, i.e. humidity (mass), pressure/wind speed (momentum)
and temperature (energy).

A quantitative precipitation forecast (QPF) using NWP
models has not yet reached the required accuracy at the
regional scale (Cuo, Pagano, & Wang, 2011; Kalnay, 2003;
Nam, Mai, Udo, & Mano, 2014). The QPF is challenging
because of inadequate observational data, as well as the
improper physical representation of the precipitation (here-
after used interchangeably with “rainfall”) process in
models due to lack of knowledge (Ebert, 2001; Vaidya,
2006; Yucel & Onen, 2014). The uncertainty in the NWP
model-derived precipitation can be introduced from several
sources: model physical parameterization, initial condition
(IC) or computational precision (Rakesh, Singh, Pal, &
Joshi, 2009). The simulation uncertainty can be reduced by
advancing the physical parameterization, applying better
numerical techniques and improving state estimation of the
IC via data assimilation (Jang & Hong, 2014). The QPF is
also sensitive to model resolution (Roberts, Cole, Forbes,
Moore, & Boswell, 2009), model domain size (Bray, Han,
Xuan, Bates, & Williams, 2011), model downscaling ratio
(Liu, Bray, & Han, 2012), and initial and boundary data
(Kumar, Kishtawal, & Pal, 2015). Moreover, the suitable
model parameterization, resolution and boundary can vary
by region, season and storm type, and often needs to be
fine-tuned separately (Sikka & Rao, 2008).

Model parameterization is the most studied feature of
NWP models. Many studies have conducted sensitivity
tests of different model parameterizations on real storm
events (e.g. Alam, 2014; Rakesh, Singh, Pal, & Joshi,
2007; Ratnam & Cox, 2006). Past studies have shown that
the QPF is directly related to the cloud microphysics
(MP) and cumulus parameterization (CP) of high-
resolution NWP models (Sikder & Hossain, 2016). The
MP explicitly resolves water vapour, cloud and precipita-
tion processes in the model. Put simply, the MP scheme is
responsible for cloud and ice formation, their evolution
and eventual fallout as precipitation. The CP is used in
coarse-resolution NWP models (> 10 km), when the MP
scheme cannot capture the fine-scale convective events
explicitly (Hsiao et al., 2013; Roberts & Lean, 2008). The
CP scheme is responsible for sub-grid-scale convective
precipitation in NWP models. Numerous studies reported
that the ISMR is sensitive to the choice of CP scheme
(e.g. Sikder & Hossain, 2016; Srinivas, Prasad, Rao, Bas-
karan, & Venkatraman, 2015). Many of these studies
found that the Betts–Miller–Janjic (BMJ) CP scheme
(Janjic, 1994) performs reasonably well in the case of
ISMR (e.g. Kumar, Dudhia, & Bhowmik, 2010; Mukho-
padhyay, Taraphdar, Goswami, & Krishnakumar, 2010).

Besides the physical parameterization, the QPF also
depends on the accuracy of the IC (Bei & Zhang, 2007).
The errors in representing the IC are eventually amplified

by the chaotic nature of the primitive equations of weather
models (Lorenz, 1963). Therefore, several approaches can
be introduced into the NWP models to quantify and reduce
the uncertainty in representing the IC. One approach is to
quantify the uncertainty in the IC with the use of model
ensembles (e.g. Durai & Bhardwaj, 2013; Georgakakos
et al., 2014). In the ensemble approach, the model is initial-
ized with multiple perturbations of the IC to reduce sensitiv-
ity to a single realization of the IC. Data assimilation is
another approach (Kalnay, 2003) that has been used fre-
quently to improve the ISMR forecasts (e.g. Raju, Parekh,
Kumar, & Gnanaseelan, 2015; Rakesh, Singh, Yuliya,
Pal, & Joshi, 2009; Routray et al., 2010; Sowjanya, Kar,
Routray, & Mali, 2013 Q2).

If one had to prioritize key issues, then the short-term
rainfall forecast can be considered most sensitive primarily
to model parameterization and the IC. In this study, the sen-
sitivity of both NWP factors to the ISMR forecast was
investigated. The motivation of such a study is twofold.
From a societal standpoint, any improvement in the QPF
translates directly to greater benefits in flood forecasting or
water supply management at short lead times (from days to
weeks). From a computational standpoint for the weather
modeller, exploring the impact of the IC demands revisiting
the chaotic nature of the weather system vis-à-vis its physi-
cal modelling complexity.

This study is particularly skewed towards the latter
motivation of exploring the IC. The natural intuition is to
expect any improvement in representation of the IC to trans-
late directly as improved skill in the forecasting of rainfall.
However, given the chaotic nature of weather and the fur-
ther computational complexities of today’s NWP models,
just how consistent is the impact of the IC on forecast
accuracy? To the best of the authors’ knowledge, such a
question has not been answered previously for the
monsoon-driven climate regime. In order to elucidate the
weather-scale features of a storm system, dynamic down-
scaling of the coarse-resolution NWP output through a
higher-resolution cloud-resolving model is the common
strategy employed in this study. In scientific terminology
first defined by Castro, Pielke Sr, and Leoncini (2005), the
study focuses on type 1 downscaling tailored to short-term
weather prediction and that involves the representation of
the IC.

The main objective of this study is, therefore, to assess
the impact of using different model-initialization tech-
niques (for IC) and cloud MP to improve rainfall forecast-
ing of the ISMR and guide the flood forecaster. In
addition to the above question, an overarching question
asked here is: Is it possible to improve the precipitation
forecast over South Asian river basins affected by the
monsoon using the appropriate model initialization tech-
niques and cloud microphysics?
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2 | THE WRF MODEL AND
BOUNDARY DATA

The weather research and forecasting (WRF) model V3.7.1
was used for dynamic downscaling (type 1) of the coarse-
resolution global NWP weather forecast and to generate a
high-resolution precipitation forecast over South Asia. The
WRF is a mesoscale cloud-resolving NWP model, which is
the successor of the MM5Q3 model. It uses non-hydrostatic
Euler equations, which are fully compressible in nature. The
WRF offers various features such as advanced dynamics,
physics and numerical schemes. For computation, the model
uses Arakawa-C grid staggering for horizontal discretiza-
tion, and a second- or third-order Runge–Kutta integration
scheme for time separation. It uses a terrain-flowing
pressure-co-ordinate system. Thus, the upper boundary of
the model is maintained by a constant pressure level. For a
further description of the WRF physics and dynamics, see
Skamarock et al. (2008).

The WRF model can be initialized with the boundary
from the various global NWP models such as the global
forecast system (GFS), the coupled forecast system (CFS)
and regional NWP models such as the North American
mesoscale model (NAM). These large-scale NWP model
forecast output data are used to generate the initial and lat-
eral boundary condition for the WRF model. In this study,
the GFS outputs were used as the WRF initial and boundary
condition. The GFS is developed by the National Oceanic
and Atmospheric Administration (NOAA) and produces
global-scale weather forecast every 6 hr up to 16 days of
lead time. As a publicly available service for the world, the
GFS is ideal for short-term weather prediction applications,
particularly in South Asia where economic resources are
constrained. The spatial and temporal resolutions vary with
lead time. For the first 10 days of lead time, the GFS pro-
vides forecasts for every 3 hr, and the outputs are available
at 0.25, 0.5, 1.0 and 2.5� resolution. Historical data of this
model have been available at a 0.5� resolution since
October 2006. The lead time of the historical data varies
with time. The 0.5� GFS model outputs were used to run
the WRF in this study.

At certain times of the day (four times), the GFS model
is initiated with the latest available observed data to generate
a real-time operational forecast. A significant amount of
observed data are available within a few hours after the oper-
ational GFS model is started. The National Centers for Envi-
ronmental Prediction (NCEP) runs the same model (i.e. the
GFS) later, with all available observed data and using the
same data-assimilation technique. This product is known as
the NCEP final analysis, often termed the GFS-FNL. Since
the model starts after a few hours of the operational GFS
model, it does not generate the forecast but produces the
hindcast. This final analysis usually contains 10% more
observed data in the representation of the IC than the

standard “quick-view” GFS forecast. These data are avail-
able at 1 and 6 hr resolution. Recently, the NCEP has started
to distribute finer analysis data using the same procedure of
the GFS-FNL described above. This high-resolution NCEP
final analysis uses the global data assimilation system
(GDAS) such as GFS-FNL and termed the NCEP GDAS
final analysis (hereafter GDAS-FNL) at the University Cor-
poration for Atmospheric Research (UCAR) data portal.
These GDAS-FNL data are available at 0.25� resolution.
Like the GFS-FNL, the GDAS-FNL is initiated every 6 hr,
with 10–15% more observed data than the GFS forecast.
Therefore, these hindcast products are expected to be more
accurate than the normal GFS forecast. Thus, for monsoonal
flood-forecasting operations for lead times up to one week,
there is no reason why the GFS-FNL and GDAS-FNL can-
not be used as model ICs in a real-world environment.

3 | STUDY REGION AND METHODOLOGY

The Indian summer monsoon (ISM) covers most of the
Indian subcontinent. The Ganges–Brahmaputra–Meghan
(GBM) river basin system of this region, which drains out
through Bangladesh to the Bay of Bengal, was selected for
this study. This system covers about 1.7 million km2, where
at least 750 million people reside (FAO, 2011). Another
selected large river basin within the ISM regime was the
Indus basin. The area of this river basin is 1.12 million km2,
where about 200 million people live. Q4In total, about 1 billion
people live in the river basins of the GBM and Indus com-
bined and are directly or indirectly affected by the ISMR.

The earlier model set-ups of the GBM and Indus basin
used by Sikder and Hossain (2016) were used as a starting
point in this study. Set-ups for both basins have two model-
ling domains. The outer domain (D01) covers almost the
same area of the Indian subcontinent and Indian Ocean in
both set-ups (Figure 1). The inner domain (D02) covers a
slightly larger area than the extent of the river basin. In both
model set-ups, the resolutions of D01 and D02 are 27 and
9 km respectively. Furthermore, an analysis extent within
the D02 was selected in order to evaluate the accuracy of
the precipitation forecast. Q5The analysis extent within the
GBM basin was divided into two segments due to strong
gradients of precipitation within this large basin system.
The heavy rainy area within the GBM basin covers the
humid subtropical region of the eastern Indian subcontinent
(Figure 1a). The less rainy area covers mainly the semi-arid
region of the mid-western Indian subcontinent. For the
Indus basin, the analysis extent covers almost the entire
basin area (Figure 1b).

Sikder and Hossain (2016) had already identified three
appropriate MP–CP combinations for the monsoon climate
regime of South Asia. They reported that three different MP
schemes work well with the BMJ CP scheme in both the
GBM and Indus basins in a hindcast mode. These MP
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schemes are the WRF single moment 5 class (WSM5)
(Hong, Dudhia, & Chen, 2004), the WRF single moment
6 class (WSM6) (Hong & Lim, 2006) and the Thompson
scheme (TS) (Thompson, Field, Rasmussen, & Hall, 2008).
In this study, the sensitivity of these three likely best MP
schemes was assessed in terms of forecasted precipitation.
Hereafter, the MP schemes are denoted by their abbrevia-
tion (e.g. WSM6). Other model parameterizations used in
this study are the BMJ CP scheme (Janjic, 1994), the

Yonsei University (YSU) planetary boundary layer scheme
(Hong, Noh, & Dudhia, 2006), the unified Noah land sur-
face model land-surface scheme (Tewari et al., 2004), the
MM5 similarity surface layer scheme (Zhang & Anthes,
1982), the Dudhia short wave (Dudhia, 1989) and the
RRTM Q6long wave (Mlawer, Taubman, Brown, Iacono, &
Clough, 1997) radiation schemes.

Besides the sensitivity test of the MP schemes in the
WRF forecast, the performance of four different WRF

FIGURE 1 Weather research and
forecasting (WRF) model domains and
analysis of the extents of (a) the Ganges–
Brahmaputra–Meghna (GBM); and (b) the
Indus basin along with the selected Global
Summary of the Day of the National
Climatic Data Center (NCDC-GSOD)
stations used for the performance
evaluation of simulated temperature and
wind speed
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model initialization techniques was tested in this study. In
the first experiment case, the traditional “cold-start” tech-
nique was used to initiate the WRF model using the GFS
forecast (e.g. Givati, Lynn, Liu, & Rimmer, 2012). The IC
of the WRF model was directly taken from the GFS forecast
in this case. The second case was also a cold-start set-up,
but the first-hour GFS forecast data were replaced by the
GFS-FNL data which are expected to represent a more
accurate IC given the higher number of assimilated observa-
tions. Thus, the IC of the model is derived from the GFS-
FNL and simulation was continued using the GFS forecast
data as the model boundary. Exclusion of the first 6 hr sim-
ulation output of a cold-start model is a common practice
used to eliminate the model “spin-up” time error. Although
the first two cases involved cold-start initialization, the
spin-up effect was not considered in this study to evaluate
the advantages of other initialization techniques.

The next two cases were based on a “warm start” (often
called a “hot start”) approach (e.g. Jankov, Gallus Jr,
Segal, & Koch, 2007). The output of a one-day pre-
simulated WRF model was used to initiate the WRF fore-
cast model in these cases. In this way, the uncertainty
related to model instability during the so-called spin-up time
is expected to be reduced. The GFS-FNL data were used as
the initial and boundary condition for this one-day pre-
simulation (i.e. hindcast), since they contain more observed
data than the operational GFS. Thereafter, the WRF forecast
model was initiated with the restart generated from this
hindcast model, and continued with the GFS forecast data
as the boundary condition in the third experiment case. The
last experimental case was almost similar to the third exper-
imental case. The only difference was the first-hour GFS
forecast data were replaced by the GFS-FNL data in the

WRF forecast simulation. Therefore, the last case is the
fusion of the second and third experimental cases. These
four experiment cases are denoted here by IC and a serial
number denoting the experimental case. Hereafter, the IC1
means the first experiment case to initiate the WRF model;
and IC2, IC3 and IC4 the second, third and fourth experi-
mental cases respectively.

The IC might have an effect on the forecasted tempera-
ture and wind speed, which directly influence the precipita-
tion and other forecasted variables. Thus, the sensitivity of
different IC approaches in forecasted daily average wind
speed at 10 m height, and the maximum and minimum tem-
perature at 2 m height were assessed. Furthermore, the sen-
sitivity of the spatial resolution of the IC data was tested to
understand better the IC approaches used. To do so, the
IC2, IC3 and IC4 test cases were simulated again, but using
the GDAS-FNL instead of the GFS-FNL data. Finally, a
straightforward comparison between the GFS, GFS-FNL
and GDAS-FNL was conducted to assess the performance
of generating the WRF IC using these different products.

Six different events associated with a heavy rainy day
over the GBM and Indus basin during the monsoon period
were selected (Table 1). Each event was simulated up to
five days of lead time, and the simulation period varied with
events by 7–10 days. Twelve different test cases are possi-
ble (three MP × four IC) in each event. Because it is com-
putationally challenging to simulate all these six events
using all 12 combinations, the events were simulated for a
few of the microphysics–initial condition (MP–IC) Q7combi-
nations. Only the GBM 2007 and Indus 2010 events were
simulated for all 12 MP–IC combinations. The selected
combinations are listed in Table 1.

TABLE 1 Selected events and lead time along with simulated microphysics–initial condition (MP–IC)Q8 combinations

Basin Event Simulation period (peak rainy day) Simulated forecast generated with a 1–5 day lead time IC

MP

WSM5 WSM6 TS

GBM GBM 2007 July 20–26, 2007 (July 26) July 24–26, 2007 IC1 × × ×

IC2 × × ×

IC3 × × ×

IC4 × × ×

GBM 2015.1 August 11–20, 2015 (August 20) August 16–20, 2015 IC1 ×

IC2 ×

IC3 ×

IC4 × × ×

GBM 2015.2 August 21–30, 2015 (August 30) August 26–30, 2015 IC4 × × ×

Indus Indus 2007 June 22–28, 2007 (June 28) June 26–28, 2007 IC1 × × ×

Indus 2010 July 22–29, 2010 (July 28) July 26–29, 2010 IC1 × × ×

IC2 × × ×

IC3 × × ×

IC4 × × ×

Indus 2012 September 1–9, 2012 (September 9) September 5–9, 2012 IC4 × × ×

Notes: Crosses indicate a selected IC–MP combination.
GBM, Ganges–Brahmaputra–Meghna; IC, initial condition; MP, microphysics; TS, Thompson scheme; WSM, single moment class.Q9
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4 | HISTORY AND BACKGROUND OF THE
SELECTED PRECIPITATION EVENTS

4.1 | The GBM 2007 event

The year 2007 was a widespread flood year in South Asia.
Several countries, including Bangladesh, Bhutan, India and
Nepal, were affected severely from this flood event. The
event was one of the major five flood events in
Bangladesh within a 20 year return period (the last
recorded similar event was in 1987) (Mirza, 2011). The
precipitation amount over the Brahmaputra and Meghna
river basins in July 2007 was higher than any other month
of the previous two years (Islam, Haque, & Bala, 2010).
In this study, a particular day of the event was selected:
July 26, 2007, when the 24 hr-accumulated areal-averaged
precipitation (from the Global Summary of the Day of the
National Climatic Data Center — NCDC-GSOD) exceeded
26 mm within the heavy rainy area of the GBM basin
(Figure 2a).

4.2 | The GBM 2015 event

The year 2015 was also a substantial flood year for the
GBM basin. Two events were selected when the 24 hr-
accumulated-areal average precipitation (from the NCDC-
GSOD) within the heavy rainy domain exceeded 20 mm.
The first event was on August 20 and the second was on
August 30. 2015 (Figure 2c, e). The first and second events
of 2015 are denoted here as GBM 2015.1 and GBM 2015.2
respectively.

4.3 | The Indus 2007 event

Pakistan was also severely affected by the South Asian
floods in 2007. Its coastal area was affected by a cyclone in
late June, followed by heavy monsoon precipitation in July–
August. The cyclone disappeared on June 26. Immediately
after the cyclone, a heavy rainfall event affected the North-
West Frontier and Punjab (World Bank, 2007). The peak
was observed within the Indus basin on June, 28 (Figure 2b),
when the 24 hr-accumulated basin average rainfall was over
10 mm (from the NCDC-GSOD).

4.4 | The Indus 2010 event

The 2010 flood event in the Indus basin was one of the
most severe in the recent history of Pakistan (Paulikas &
Rahman, 2015). The flood was caused by heavy monsoon
precipitation in late July. An unusual wind and pressure
anomaly on that day conveyed moisture into the northwest-
ern part of the country and caused heavy rainfall (Houze Jr,
Rasmussen, Medina, Brodzik, & Romatschke, 2011). Wang,
Davies, Huang, and Gillies (2011) claimed that the anoma-
lies observed during the event were not intermittent, and
this abnormal circulation was a part of the long-term trend

of the monsoon. However, precipitation of this event inten-
sified on July 28 (Figure 2d). The 24 hr-accumulated basin-
average precipitation was over 17 mm on that day (from the
NCDC-GSOD).

4.5 | The Indus 2012 event

During 2012, monsoon precipitation within the Indus basin
was moderate until August. Rainfall rapidly intensified dur-
ing the first half of September and caused severe flooding
in Pakistan. The precipitation peaked between September
6–11 in the Punjab and Sindh provinces of Pakistan
(Memon, Muhammad, Rahman, & Haq, 2015). The maxi-
mum 24 hr-accumulated areal-averaged precipitation within
the basin area was on September 9 (Figure 2f ), and
exceeded 11 mm (from the NCDC-GSOD).

5 | REFERENCE DATA AND ANALYSIS
TECHNIQUE

Two sets of reference data were used to evaluate the perfor-
mance of the WRF-forecasted precipitation. A gridded ref-
erence data set was used to determine the ability of the
model to capture precipitation in the spatial direction. Trop-
ical rainfall measuring mission (TRMM) product 3B42V7
was used as the gridded reference data source. These daily
data are available at 0.25� resolution. Details of this product
are described by Huffman (2013). Another data set was
used to evaluate the accuracy of the model to estimate the
amount of precipitation. The GSOD data set provided by
the NCDC was used for this purpose. This in situ station-
based data set is available through the World Meteorologi-
cal Organization (WMO). The Thiessen polygon approach
was applied to determine the areal average precipitation
within the analysis extents of the GBM and Indus basins.
Figure 2 shows the locations of the available stations within
the study areas and their associated Thiessen polygons in
the GBM and Indus basin respectively. The same data
source (i.e. the NCDC-GSOD) was used for the perfor-
mance evaluation of simulated daily maximum temperature,
minimum temperature and average wind speed. Based on
the data availability, a total of nine and 10 stations for tem-
perature and wind speed were used for the GBM and Indus
basin respectively. The stations were selected carefully to
cover the entire basin as well as the different climate
regime. The locations of these stations are shown in
Figure 1.

The model performance metrics in this study were
divided into two parts, as done by Liu et al. (2012). Four
categorical metrics were used to understand model accuracy
to determine rainfall in the spatial direction. These metrics
are the probability of detection (POD), frequency bias index
(FBI), false alarm ratio (FAR) and critical success index
(CSI). They were calculated with respect to the gridded
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reference data (i.e. the TRMM). The categorical metrics
were calculated based on the contingency table of precipita-
tion (Table 2).

The equations for calculating the average categorical
metrics are:

POD=
1
n

Xn
i=1

RRi

RRi +NRi
ð1Þ

CSI =
1
n

Xn
i=1

RRi

RRi +RNi +NRi
ð2Þ

FIGURE 2C
ol
or

on
lin

e,
B
&
W

in
pr
in
t

SelectedQ29 intense precipitation events (tropical rainfall measuring mission (TRMM) 3B42V7) in the Ganges–Brahmaputra–Meghna (GBM) (a, c,
e) and Indus basin (b, d, f ) along with the available Global Summary of the Day of the National Climatic Data Center (NCDC-GSOD) station within the
analysis extents and their associated Thiessen polygons [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Contingency table for precipitation analysis

Simulated/observed Rainobserved No Rainobserved

Rainsimulated RRQ10 (hit) RN (false rain)

No Rainsimulated NR (miss) NN (correct negative)
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FAR=
1
n

Xn
i=1

RNi

RRi +RNi
ð3Þ

FBI =
1
n

Xn
i=1

RRi +RNi

RRi +NRi
ð4Þ

where n is the number of time steps multiplied by the num-
ber of grid cells. The POD is the probability of success to
detect rainfall with respect to all observed rainfall. The CSI,
often termed as “Theta score,” also represents the same
characteristics as the POD, but with respect to all observed
rainfall as well as the unwanted rainfall generated by the
simulation. Both metrics ranged from 0 to 1, where 1 is for
the ideal case. The FAR indicates the probability of false
rainfall generated by the simulation with respect to all rain-
fall generated by the model. The perfect score for the FAR
is 0. All three metrics (POD, CSI, FAR) do not consider the
bias of forecasted rainfall. The FBI was used to detect the
trend (i.e. under- or overestimation) of the simulated precip-
itation with respect to the observed data. The FBI ranged
from 0 to infinity, where 1 is the ideal score. Any value
smaller than or greater than 1 indicates that the simulation
is under- or overestimating the event respectively.

Similarly, three continuous metrics were used to evalu-
ate the ability of the model to estimate the amount of pre-
cipitation: the root mean squared error (RMSE), mean bias
error (MBE) and standard deviation (SD). All were evalu-
ated with respect to the areal averaged in situ measured
rainfall data (i.e. the NCDC-GSOD).

The equations of the continuous metrics are:

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i=1

Rsim−Robsð Þ2
s

ð5Þ

MBE=
1
n

Xn
i=1

Rsim−Robsð Þ ð6Þ

SD=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n−1

Xn
i=1

Rsim−Robs−MBEð Þ2
s

ð7Þ

where n is the number of time steps; Rsim and Robs are the
simulated and observed areal averaged precipitation within
the analysis extent respectively; the RMSE and SD repre-
sent the amount of error but not the direction of the error
with respect to the observes; and the MBE indicates the
cumulative error as well as the direction of the simulated
rainfall bias. The MBE can be any real number. A negative
or positive MBE indicates that the model is under- or over-
estimating the amount of precipitation respectively.

Evaluating the performance of the simulated rainfall
derived from different sets of combinations is difficult when
using seven different metrics. Therefore, a single skill score
that can combine the characteristics of the seven metrics is
useful. A skill score (called the unified score) defined previ-
ously by Sikder and Hossain (2016) was used. For

convenience, a description of this skill score is now pro-
vided. The unified score is the simple average of all seven
error metrics. Here all error metrics have the same weight.
At first, these seven metrics were rescaled in a range
between 0 and 1. The equations used for the rescaling are
shown in Table 3. Here the threshold values of the FBI,
MBE and RMSE were set based on the maxima and minima
of these metrics found in this study. All the rescaled metrics
(denoted with subscript “r”) range from 0 to 1, where 1 is
the ideal value. Thereafter, the average of all rescaled error
metrics was taken and named the unified score, ranging
from 0 to 1, with the perfect score being 1:

Unified score =

PODr +CSIr + FARr + FBIr +RMSEr +MBEr + SDr

7

� �
ð8Þ

Another skill score was used to understand the perfor-
mance of the spatial distribution of the forecasted precipita-
tion. Named the “spatial extent score,” it was used to
evaluate the model performance of a single-day event,
where it was not possible to calculate the continuous met-
rics. This score was calculated by taking the average of only
the rescaled categorical metrics. Thus, it mainly represents
model performance in the spatial direction. The range and
ideal value of this skill score is the same as for the unified
score:

Spatial extent score =
PODr +CSIr + FARr + FBIr

4

� �
ð9Þ

Performance of the simulated daily maximum tempera-
ture, minimum temperature and average wind speed were
evaluated using the average MBE and RMSE of all stations
within the basins.

6 | RESULTS AND DISCUSSION

In the GBM basin, the analysis was carried out in two dif-
ferent locations to observe the WRF precipitation forecast
performance in different climate regimes. The selected
intense precipitation events were located within the heavy

TABLE 3 Equations of rescaled metrics

Rescaled error metrics Threshold

PODr = POD

FBIr = (FBImax − FBI); when FBI > 1 FBImax = 2

FBIr = FBI; when FBI < 1

FARr = 1 − FAR

CSIr = CSI

MBEr = 1 − MBE/MBEmax; when MBE > 0 MBEmax = 15

MBEr = 1 − MBE/MBEmin; when MBE < 0 MBEmin = −15

RMSEr = (1 − RMSE/RMSEmax) RMSEmax = 15

SDr = (1 − SD/SDmax) SDmax = 15
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rainy area of the basin. Thus, the outputs of the heavy rainy
area revealed the forecast performance during the instance
of a rainfall event in that region. On the other hand, the
results over the less rainy area provide the performance cri-
teria when the precipitation is sparse or negligible. In the
case of the Indus basin, almost the entire basin was consid-
ered for the analysis.

At first, the sensitivity of three different cloud MPs on
the forecasted precipitation was tested. In the next step, the
sensitivity of four different IC test cases on the WRF fore-
casted precipitation was evaluated. The main objective was
to identify the suitable test cases in all conditions of the
monsoon-driven South Asian river basins. These analyses

were carried out for a few periods (3–6 days depending on
the available 1–5 day lead time-simulated forecast)
(Table 1). For example, the GBM 2007 storm event was
simulated for July 20–26, 2016. Results from a 1 to 5 day
lead time were available for each day for July 24–26 for this
event. Therefore, these three consecutive days were consid-
ered for the IC–MP sensitivity analysis. Likewise, the per-
formance of the simulated daily average wind speed and
maximum and minimum temperatures were evaluated with
respect to a different IC approach. The impact of using finer
resolution data (i.e. the GDAS) as the model IC was then
evaluated for the GBM 2015.1 event with respect to differ-
ent MP schemes and IC approaches. The ability of the

FIGURE 3

C
ol
or

on
lin

e,
B
&
W

in
pr
in
t

Performance (unified score) of
the weather research and forecasting
(WRF)-forecasted precipitation at different
lead times with respect to different
microphysics (MP) schemes (a, c, e, g) and
initial condition (IC) experiment cases (b,
d, f, h). The performance of the
quantitative precipitation forecast (QPF)
within the heavy rainy area, less rainy area,
the combined area of the Ganges–
Brahmaputra–Meghna (GBM) basin and
within the analysis extent of the Indus
basin are shown in the upper, upper-
middle, lower-middle and lower panels
respectively. Each line represents a lead
time. The alternatives (e.g. WRF single
moment 6 class (WSM6); IC3) with higher
scores (i.e. closer to the circumference) are
more accurate [Color figure can be viewed
at wileyonlinelibrary.com]
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model to capture the intense precipitation events was then
evaluated. To do so, only the rainiest day of each event was
considered. Thus, this analysis was carried out only for one
day of each event. Finally, the comparison between the
WRF simulated precipitation, temperature and wind speed
was carried out using the GFS, GFS-FNL and GDAS-FNL.
This analysis assessed the performance of these products to
generate the WRF IC. The analysis was performed only for
the heavy rainy area of the GBM basin between July 8 and
September 31, 2015, based on the common time period of
the available data.

To carry out the IC and MP sensitivity tests, categorical
and continuous metrics were used. The rescaled error

metrics were then calculated using the equations in Table 3.
These rescaled metrics ranged from 0 to 1, where 1 is the
ideal value in all cases. Finally, the unified score was calcu-
lated using Equation (8) to evaluate the overall performance
of each combination. In the GBM basin, the GBM 2007
event was simulated using all test scenarios. Along with this
event, all three MP schemes in the GBM 2015.1 and GBM
2015.2 events were simulated using only the IC4 test case.
Four IC test cases for the GBM 2007 and only the IC4 test
case for the GBM 2015.1 and GBM 2015.2 were considered
for the analysis of the MP scheme’s sensitivity. Thus, the
MP scheme’s sensitivity analysis in the GBM basin is par-
tially biased by the IC4 test case. On the other hand, all

FIGURE 4C
ol
or

on
lin

e,
B
&
W

in
pr
in
t

(a, b) Mean bias error (MBE) of the daily maximum temperature (Tmax); (c, d) root mean squared error (RMSE) of the daily maximum
temperature (Tmax); and (e, f ) the RMSE of the daily average wind speed with respect to different initial condition (IC) approaches in the Ganges–
Brahmaputra–Meghna (GBM) (e) and Indus basin (f ) [Color figure can be viewed at wileyonlinelibrary.com]
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three MP schemes of the GBM 2007 were considered for
the IC sensitivity test, since the event was simulated for all
MP–IC combinations. Though the GBM 2015.1 event was
simulated using all the IC test cases with the TS scheme
(Table 1), the event was not included in the IC sensitivity
test of the GBM basin. This was to be consistent with the
Indus basin analysis, where only the Indus 2010 event was
considered for the IC sensitivity test. Therefore, this analy-
sis is fully biased by the GBM 2007 event. However, the
performance of the IC test cases of the GBM 2015.1 event
is shown separately (Figure 5). The number of warm- and
cold-start simulations is equal to the Indus basin (Table 1).
All simulations were considered for the MP scheme sensi-
tivity test. The simulations of the Indus 2010 event were
used for the IC sensitivity test, as all the IC test cases were
simulated for this event. Overall, the result of the Indus
analysis is partially and fully biased by the performance of
the Indus 2010 event in the case of the MP and IC sensitiv-
ity tests respectively.

Figure 3 shows the IC–MP sensitivity results. Each line
of these radar charts represents a lead time, while each
spoke (i.e. radii) represents an alternative (e.g. the IC or
MP). The results for both 27 and 9 km domains are shown
to evaluate the sensitivity of these variables under different
model resolutions. Here the higher score (i.e. the unified
score) means a better match with the observations. Thus,

the line closer to the circumference of these radar chart
means more accuracy; less accurate results are closer to the
centre.

The selected MP schemes (Figure 3a) are not that sensi-
tive as the IC approaches (Figure 3b) in the heavy rainy
area of the GBM basin. Within this area, the WRF fore-
casted precipitation with all the MP schemes shows rela-
tively poor performance than the GFS with a higher lead
time Q11(Figure 3a). A separate analysis of each event showed
that the performance of the GFS in the heavy rainy area of
the GBM basin increases with time up to a 5 day lead time,
while in the Indus it is up to a 3 day lead time. The perfor-
mance gradually decreases with time in less rainy areas of
the GBM basin. The reason could be the poor quality of the
assimilated data in the GFS model. This is discussed further
below. The similar performance of all the MP schemes in
forecasted precipitation is consistent with the findings of
Sikder and Hossain (2016), who reported that these three
MP schemes perform equally with the BMJ CP scheme in
hindcast mode. The sensitivity analysis of the IC approaches
(Figure 3b) suggested that the cold-start options (i.e. the
IC1 and IC2) are better than warm start within the wet area
of the GBM basin.

Generally, it was expected that the warm (or hot) start
should perform better. The reason for this counterintuitive
performance was investigated and is discussed below. The

FIGURE 5C
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Performance of the daily maximum temperature (Tmax) (a) mean bias error (MBE) and (b) root mean squared error (RMSE)); (c) weather
research and forecasting (WRF)-forecasted precipitation (unified score); and (d) daily average wind speed (RMSE) with respect to different initial condition
(IC) approaches in the Ganges–Brahmaputra–Meghna (GBM) basin, considering only the 2015.1 event [Color figure can be viewed at
wileyonlinelibrary.com]
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performance of the forecasted precipitation is not that sensi-
tive to the MP scheme (Figure 3c) or the IC approach
(Figure 3d) within the lesser area of the GBM basin.Q12 The
reason is that the performance evaluated is based on the
number of simulated and observed “rainy” cells. In this
area, most of the cells are dry and the analysis only within
the less rainy area shows an almost similar performance in
all cases. The results of the heavy rainy area are dominant
in the combined case; for the same reason as well as the
analysis extent of the heavy rainy area is larger than the less
rainy areaQ13 (Figure 3e, f ). The Indus basin shows almost a
similar response to the different MP schemes (Figure 3g)
and IC approaches (Figure 3h). Overall, the WRF forecasted
precipitation is not notably sensitive to the selected MP
schemes as well as the spatial resolution at this scale. The
optimized MP schemes and resolutions identified by Sikder
and Hossain (2016) in the hindcast mode for monsoon
weather remains true for the forecasting mode. The WRF
model shows sensitivity to the IC test cases in the GBM
basin as well as in the Indus basin. Here the cold-start IC
approaches showed a more promising result than warm
start.Q14

Precipitation is a derived variable in the NWP models.
Temperature and wind vectors are directly calculated by the
primitive equations of the NWP models. Therefore, the per-
formance analysis of the WRF-simulated daily average wind
speed and maximum and minimum temperatures was con-
ducted to understand better the sensitivity of the IC
approaches. The MBE and RMSE of daily temperature and
wind speed are shown in Figure 4. The MBE in the GBM
basin (Figure 4a) indicates that the daily maximum tempera-
ture (Tmax) is overestimated by the WRF model. The IC
yielded some sensitivity in the case of Tmax of the GBM
basin. On the other hand, the estimated Tmax is more sensi-
tive to the model resolution than the IC approaches in the
Indus basin (Figure 4b). The IC sensitivity analysis is fully
biased to the GBM 2007 and Indus 2010 event for the
GBM and Indus basin respectively. A separate analysis of
the GBM 2015.1 (Figure 5a) shows that the MBE of Tmax

in the GBM basin is also sensitive to the model resolution
than the IC, such as the Indus 2010. Thus, the performance
shown in Figure 4a is event specific (only in the case of the
GBM 2007). The RMSE of Tmax (Figure 4c, d) shows that
at this scale of model resolution the WRF forecasted Tmax

cannot exceed the accuracy of its model boundary (i.e. the
GFS). However, the finer resolution model shows a slightly
and significantly better result in the GBM and Indus basin
respectively. An almost similar performance was found for
daily minimum temperature (not shown) and daily average
wind speed (Figure 4e, f ). The RMSE of Tmax and wind
speed in the GBM 2015.1 event (Figure 5b, d) showed an
almost similar performance as the Indus basin. As for pre-
cipitation (Figures 3 and 5c), the rather counterintuitive
finding of an insignificant improvement in the forecast

using the IC3 and IC4 (supposedly a better representation
of the IC with assimilated observations) can be attributed to
the spatial scale issue. The GFS-FNL is actually available at
a 1� resolution, while the cold-start IC fields are at 0.5� res-
olution. Therefore, it is likely that the coarser scale of the
observation-assimilated IC scenarios provides no significant
benefit to improving forecast accuracy. This finding regard-
ing the impact of the spatial scale in dynamic downscaling
is somewhat consistent with Xiaodong and Hossain (2016).
Therefore, the results of the GBM 2015.1 initiated with the
GDAS-FNL (0.25�) were compared with the same model
initiated with the GFS-FNL in the next step.

The impact of using the fine-resolution IC within the
heavy rainy area is shown with respect to different MP
schemes (Figure 6a) and different IC approaches
(Figure 6b). The analysis of the 9 km domain is reported
here, as the impact of the finer IC in the 27 km domain is
not significant. This indicates that the use of a finer resolu-
tion IC is only suitable in higher resolution models. The use
of the GDAS-FNL does not have any positive impact in the
case of the WSM5 and WSM5 MP schemes (Figure 6a).
However, the difference between the GDAS-FNL and GFS-
FNL-initiated model is less in the 9 km domain than in the
27 km domain (not reported). A slight improvement with
the TS MP scheme is visible in the lower lead time. Note
that only the IC4 test case was considered for this analysis.
In the case of different IC approaches (Figure 6b), the
impact of using a finer resolution IC is clearly visible, as
only the TS scheme was considered. However, Figure 6
reveals that the cold-start approach (here, IC2) significantly
improves the result with the GDAS-FNL from a 1 day lead
time. In the case of warm starts (i.e. the IC3 and IC4), a late
improvement is noticeable. Here the cold-start approach IC2
directly got the IC form GDAS-FNL Q15without any further
degradation in quality. The warm starts in this study used a
one-day pre-simulation using the available analysis data,
seems not reducing the spin-up time error. Q16Instead of reduc-
ing any error, the process adds some further uncertainty in
the IC through simulation. Therefore, the warm-start
approaches used are not worthy for heavy precipitation fore-
casting in monsoon weather.

Furthermore, each precipitation event was evaluated
separately to see the performance of the WRF model at
detecting the rainiest day of the events. The performance of
different combinations was calculated in terms of accuracy
in the spatial distribution using Equation (9), as well as the
areal average amount of precipitation. Only the heavy rainy
area of the GBM basin was considered for this analysis,
while the full basin was considered in the case of the Indus.

Model performance on July 26, 2007 shows that the
cold-start case IC1 exhibited better performance in terms of
spatial extent as well as in the amount of precipitation
(Figure 7a, b) within the heavy rainy area of the GBM
basin. The IC4 test case with the TS MP scheme shows
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FIGURE 6C
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Comparison between the global forecast system final (GFS-FNL) and global data assimilation system final (GDAS-FNL)Q17 -initiated model results
with respect to different microphysics (MP) schemes (a) and initial condition (IC) approaches (b). Analyses are shown for the 9 km domain of the heavy
rainy area of the Ganges–Brahmaputra–Meghna (GBM) basin [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 7C
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Assessment of forecast accuracy within the heavy rainy area of the Ganges–Brahmaputra–Meghna (GBM) basin in terms of the spatial extent
score and as a function of lead time (a, c, e), and in terms of precipitation amount (b, d, f ). In (a, c, e), the firm and dashed lines are for results from the
27 and 9 km domains respectively [Color figure can be viewed at wileyonlinelibrary.com]
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slightly better performance in spatial extent score. The accu-
racy of different combinations in terms of spatial distribu-
tion did not vary significantly on August 20, 2015
(Figure 7c). However, in areal average precipitation, the
accuracy of the 27 km domain was significantly better than
for the 9 km domain (Figure 7d). August 20, 2015 is the
only intense event among the selected six days where the
WRF simulated precipitation is significantly overestimated.
Only the IC4 was tested on August 30 with different MP
schemes, where the variation in terms of the spatial extent
(Figure 7e) and amount of precipitation (Figure 7f ) is not
significant. In general, the performance of the WSM5 and
WSM6 MP schemes is almost similar and they perform
well, particularly with cold-start approaches.

In the Indus basin, the June 28, 2007 event was only
tested for the IC1 test case with different MP schemes. The
TS scheme shows slightly better performance at higher lead

time (after a four-day lead time) both in terms of spatial
extent and precipitation amount (Figure 8a, b). July
28, 2010 is the only event where all the MP–IC combina-
tions were tested. However, only the WSM5 with all the IC
approaches are reported (Figure 8c, d). The IC1 and IC2
perform better. On September 9, 2012, only the IC4 experi-
ment case was tested, and the TS shows relatively better
performance (Figure 8e, f ). Overall, the cold-start
approaches perform relatively better in the Indus basin like
GBM. Q18However, the TS performs slightly better in the Indus
basin in case of a heavy rainy day.

The WSM5 and WSM6 are the same MP scheme,
except for the graupel in the WSM6. On the other hand, the
Thompson scheme is a completely different scheme than
both the WSM schemes: it is a single-moment scheme with
a double-moment capability in cloud ice variables Q19

(Thompson et al., 2008). This is the reason for the

FIGURE 8C
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As for Figure 7, but for the Indus basin [Color figure can be viewed at wileyonlinelibrary.com]
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difference in the performance of the WSM schemes with
the TS. However, all three MP schemes produced almost
similar results within the range of the 9–27 km domains.
Thus, the impact of using any sophisticated MP scheme
seems unsuitable due to computational time within this
scale of model resolution (i.e. 9–27 km). Furthermore, using
an MP scheme with graupel (e.g. the WSM6 and TS) is
worthy only when the model resolution is below 10 km.
Therefore, using the WSM5 scheme up to the 9 km domain
is sufficient to generate a precipitation forecast in monsoon
weather.

Finally, a comparison between the WRF precipitation
using the GFS (0.5�), GFS-FNL (1�) and GDAS-FNL
(0.25�) as the model boundary was also performed to investi-
gate the reason behind the poor result in hot-start simula-
tions. The analysis was carried out using different
precipitation thresholds (0, 5, 10 and 15 mm) and data from
July 8–September 31, 2015. The precipitation is shown in
Figure 9a, when the observed precipitation exceeded 15 mm
rainfall within the heavy rainy area of the GBM basin. The
WRF-simulated precipitation performance was almost equal
when using these three products as a model boundary in the
case of heavy rainfallQ20 (Figure 9a). However, in August and
September, the GSFQ21 performed consistently better with
respect to the others. The CSI (Figure 9b) indicates that the

accuracy of the GFS increases with heavier rainfall. A simi-
lar trend is visible in the case of the MBE (Figure 9c) and
RMSE (Figure 9d), where the GFS shows less error in heavy
rainfall (e.g. a 15 mm threshold) than the GFS-FNL and
GDAS-FNL as a model boundary. Regardless of the resolu-
tion, both final analysis data failed to outperform the GFS in
heavy rainfall despite having 10–15% more observed data in
their initial state. This indicates that the quality of the assimi-
lated data in the GFS and its final analysis within the ISMR
region are inadequate to make a positive impact on predict-
ability, wherein the greater amount of observed data may
have introduced more errors into the model product. The
error in the observed data is found to be more in the Himala-
yan foothills, where most of the monsoon rainfall occurs.
Since the model accuracy at the lower lead times is more
dependent on the model IC than the boundary, inadequate
data assimilation can also be the reason behind the inverse
trend of the GFS forecast as a function of lead time in the
heavy rainy area of the GBM basin.

7 | CONCLUSIONS

The major goal of this study was the assessment of the sen-
sitivity of different model-initializing techniques (initial

FIGURE 9C
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Comparison between the weather research and forecasting (WRF)-simulated precipitation using the global forecast system (GFS), global
forecast system final (GFS-FNL) and global data assimilation system final (GDAS-FNL)Q22 as the model boundary. Analyses are shown for the 27 km domain
of the heavy rainy area of the Ganges–Brahmaputra–Meghna (GBM) basin: (a) precipitation amount, when the observed exceeded 15 mm of rain;
(b) critical success index (CSI); (c) mean bias error (MBE); and (d) root mean squared error (RMSE) of the simulated precipitation at different precipitation
thresholds [Color figure can be viewed at wileyonlinelibrary.com]
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condition — IC) and cloud microphysics (MP) on the accu-
racy of the weather research and forecasting (WRF) fore-
casted precipitation of South Asia. A total of six events
including an intense rainy day in the Ganges–Brahmaputra–
Meghna (GBM) and Indus River basin were tested to
identify the most suitable microphysics–initial condition
(MP–IC)Q23 combination for the flood forecaster. Although the
six events studied may not be enough to generalize the find-
ings, this study does provide some suggestions for further
studies with similar objectives. From the results of this
study, the authors have attempted to present a general
guideline to predict rainfall more accurately using the WRF
model in the monsoon-driven climate regime. Such a guide-
line can be helpful for the flood-forecasting agencies of
South Asian countries where the Indian summer monsoon
rainfall (ISMR) is the governing reason for flooding.

The primary conclusion is that the warm-start options
designed for this study cannot significantly outperform the
cold-start options. In most cases, the cold-start shows bet-
ter performance than the warm-start options. From a com-
parison of the global data assimilation system final
(GDAS-FNL) and global forecast system final (GFS-FNL)-
initiated models, it seems that the one-day pre-simulation
(hindcast simulation) of warm-start options does not
remove the spin-up time error. Rather, this pre-simulation
process adds further uncertainty in the model IC. The same
comparison analysis reveals that the use of higher-
resolution IC with a simple cold-start option may improve
forecast performance. A similar finding has been reported
for the model boundary resolution for the Indian subconti-
nent by Kumar, Kishtawal, and Pal (2016). However, the
straightforward comparison between the GFS, GFS-FNL
and GDAL-FNL indicates there is the possibility of poor-
quality data assimilation in the GFS and GFS final analysis
products in the Himalayan foothills region. This is the rea-
son for the relatively poor result in the GFS final analysis
products, where 10–15% more observed data are used
through assimilation. Ultimately, this forcing error propa-
gated in the warm-start test cases designed for this study,
where the GFS final analysis products were used to gener-
ate the WRF IC.

In the case of cloud MP, the performance of the WRF
single moment 5 class (WSM5) and WRF single moment
6 class (WSM6) MP schemes is mostly similar. These MP
schemes perform well with cold-start options. The WSM
schemes show their consistency in the case of the heavy
rainy days within the GBM basin. On the other hand, the
Thompson scheme (TS) MP scheme seems to work well in
the heavy rainy days of the Indus basin, no matter what is
the IC case. However, the difference between the WSM and
TS schemes in not that significant at this scale. Thus, con-
sidering the computational requirement of a complex MP, it
can be concluded that the WSM5 is the recommended
option with the cold-start IC approach at this scale. The

sensitivity of the MP schemes shows consistency with the
findings of Sikder and Hossain (2016).
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