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Abstract—We studied variations in the volume of water stored9
in small lakes and wetlands using satellite remote sensing and lake10
water height data contributed by citizen scientists. A total of 9411
water bodies across the globe were studied using satellite data in12
the optical and microwave wavelengths from Landsat 8, Sentinel-1,13
and Sentinel-2. The uncertainty in volume estimation as a function14
of geography and geophysical factors, such as cloud cover, precipi-15
tation, and water surface temperature, was studied. The key finding16
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that emerged from this global study is that uncertainty is highest in 17
regions with a distinct precipitation season, such as in the monsoon 18
dominated South Asia or the Pacific Northwestern region of the 19
USA. This uncertainty is further compounded when small lakes and 20
wetlands are seasonal with alternating land use as a water body and 21
agricultural land, such as the wetlands of Northeastern Bangladesh. 22
On an average, 45% of studied lakes could be estimated of their 23
volume change with a statistical significant uncertainty that is 24
less than the expected volume in South Asia. In North America, 25
this statistically significant uncertainty in volume estimation was 26
found to be around 50% in lakes eastward of the 108th meridian 27
with lowest uncertainty found in lakes along the East coast of 28
the USA. The article provides a baseline for understanding the 29
current state of the art in estimating volumetric change of lakes 30
and wetlands using citizen science in anticipation of the recently 31
launched Surface Water and Ocean Topography Mission. 32

Index Terms—Citizen science, lakes, remote sensing, satellites, 33
Surface Water and Ocean Topography (SWOT), wetlands. 34

I. INTRODUCTION 35

WATER bodies, such as small lakes (i.e., those smaller 36

than 100 km2) and wetlands, provide vital functions for 37

ecosystems and sustain biodiversity. Globally, wetlands cover 38

an area of 1.2 billion hectares, which is equivalent to the area 39

of Canada [1]. Downing et al. [2] claimed that the total surface 40

area of natural and artificial lakes is over 4.6 million km2, which 41

translates to about 117 million water bodies [3]. These water 42

bodies act as biological supermarkets, groundwater recharge, 43

and discharge points, and they provide both water and nutrients 44

necessary for crop production. Wetlands and small lakes also 45

support flood control and ecotourism. According to Global Wet- 46

land Outlook (Ramsar Convention, 2021), wetlands have been 47

rapidly declining. Approximately 35% of the world’s wetlands 48

have been disappearing since 1970 [1]. While there are various 49

physical drivers that affect the behavior of wetlands and small 50

lakes, the most critical among them, other than perhaps direct 51

human management, is likely changing patterns of weather, 52

hydrology, and climate [1]. 53

In recent years, our ability to track the extent of small lakes 54

and wetlands has increased manifold. Lehner and Döll [4] devel- 55

oped the Global Lakes and Wetlands Database (GLWD), which 56
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provides the maps and water surface area of the lake, wetlands,57

reservoirs, and rivers. For lakes, GLWD was superseded by the58

HydroLAKES database [5], which mapped about 1.4 million59

lakes larger than 0.1 km2. A study by Sheng et al. [6] mapped60

7.7 million lakes that are larger than 0.004 km2. Meanwhile,61

Verpoorter et al. [3] used satellite imagery to identify more62

than 117 million lakes globally. Hu et al. [7] studied the areal63

extent of the wetlands and lakes by developing a new index64

(precipitation topographic wetness index). However, despite this65

improved understanding of the location and extent of small66

lakes and wetlands, understanding of the physical behavior of67

wetlands and lakes around the world remains limited, especially68

in developing regions. Specifically, we understand very little69

about how volumetric changes of lakes and wetlands modulate70

over time and as a function of climate, season, or geographic71

region. A primary reason for this gap is the paucity of in-situ lake72

and wetland gauges relative to the widespread presence of lakes73

and wetlands around the globe. Unlike for rivers, there are no74

major national or international repositories dedicated to storing75

in-situ lake level data. Even in developed countries, such data76

are limited—for example, the U.S. Geological Survey gauges77

more than 10 000 rivers but only a few hundred lakes.78

Studying volumetric changes at a global scale is therefore79

not feasible using limited in-situ gauges given the remoteness80

of numerous water bodies and lack of economic or institutional81

resources to maintain an in-situ measurement network. Studying82

wetlands and small lakes using satellite remote sensing is only83

cost-effective and feasible way to understand the volumetric84

change of water bodies on a global scale [8], [9]. Most studies85

that aim to do so use different sensors to study surface water86

extent and water surface elevation, which, in combination, allow87

estimation of volume change. Detection of the surface water88

extent and elevation can be performed with sensors of different89

resolutions and electromagnetic wavelengths. Coarser spatial90

resolution sensors, such as NOAA/AVHRR and Moderate Res-91

olution Imaging Spectroradiometer (MODIS), have low spatial92

accuracy but high temporal resolution and coverage, and are93

often used to study large lakes [10]. Medium spatial resolution94

sensors, with a resolution of around 10–30 m, are widely used in95

studies of smaller lakes [3]. A few examples for medium resolu-96

tion are the Landsat series, Sentinel 2, and Advanced Spaceborne97

Thermal Emission and Reflection Radiometer. High spatial res-98

olution sensors, such as Planet, RapidEye, and IKONOS, have99

a resolution around 1–5 m, but they are not freely available.100

The type and nature of water bodies that can be studied with101

reasonable accuracy usually depend on the pertinent resolution102

and sampling frequency of sensor data that are available.103

In recent years, studies have shown that multisensor ap-104

proaches combining optical and SAR data to measure inundation105

extent are often more robust [11]. Researchers have come up with106

various indices like modified normalized difference water index107

(MNDWI) [12], normalized difference Water index [13], and108

techniques like dynamic surface water extent (DSWE) [14] and109

angle looking SAR. Optical satellites like the Landsat series [14],110

[15], [16], MODIS sensors onboard the National Aeronautics111

and Space Administration (NASA) Terra and Aqua satellites112

[17], and Visible Infrared Imaging Radiometer Suite onboard113

Suomi National Polar-orbiting Partnership [18] can be used to 114

study water surface area and volume of water stored. However, a 115

major drawback of optical satellites is that they cannot penetrate 116

clouds. To overcome the issue of cloud cover, synthetic aperture 117

radar (SAR) can be used with an understanding of the proper 118

threshold on backscattering to detect water surfaces [19]. How- 119

ever, SAR may not always be accurate because other smooth 120

surfaces and shadowed areas share almost identical scattering 121

properties with water surfaces. For example, bare soils can some- 122

times create false-positive cases [20]. Despite such a wide range 123

of available techniques, the uncertainty of surface water area and 124

hence volume estimation due to the choice of methods has not 125

been rigorously studied for lakes and wetlands. Understanding 126

these uncertainties is challenging yet important. It is challenging 127

due to cloud cover and seasonally contrasting environments. For 128

example, freezing/thawing of lakes in higher latitudes can make 129

detection of variations in volume difficult [21], [22]. Similarly, 130

lake area cannot be regularly detected due to extensive cloud 131

cover, for example, during months-long monsoon seasons. 132

Both optical and microwave angle-looking sensors can only 133

estimate the area of the water bodies. On the other hand, satellite 134

altimeters, such as Jason 3, Sentinel 3, and SARAL/AltiKa, 135

provide water surface elevation [23]. Baup et al. [24] devel- 136

oped three independent approaches to estimate the lake: volume 137

high-resolution image-based volume, altimetry-based volume, 138

and altimetry and high-resolution-based volume changes. Duan 139

and Bastiaanssen [25] and Cretaux et al. [26] have used a combi- 140

nation of lake extent and water level at different dates in order to 141

build hypsometry relationship, which was then used to calculate 142

lake extent and level simultaneously using satellite altimetry 143

measurements. The uncertainty in elevations from altimeters 144

can vary from a few centimeters for large water bodies to tens 145

of centimeters for small water bodies [27]. The limitation of 146

altimeters is the limited spatial sampling due to the narrow width 147

of the sampling track. On the other hand, lidar missions with very 148

high spatial coverage, like IceSat-1 or IceSat-2, have the proven 149

potential to measure water level at very high accuracy over a 150

large number of lakes worldwide [28] due to their long revisit 151

times that however lead to missing subseasonal variabilities and 152

rapid changes in lake levels. 153

To overcome the combined challenges of the current fleet 154

of satellite sensors and the limitations of existing in-situ gauge 155

networks, one possible solution to monitoring lake water level is 156

the application of citizen science in monitoring waterbodies [29], 157

[30], [31]. Citizen science is an emerging science where the pub- 158

lic participates and collaborates in scientific research to increase 159

knowledge. One example of the use of citizen science is the 160

Lake Observation by Citizen Scientists and Satellites (LOCSS) 161

(https://www.locss.org/) program, where citizen scientists report 162

the water height elevation of lakes or wetlands by reading staff 163

gauges [30]. Hereafter, we use the terms height and elevation 164

interchangeably to refer essentially to the vertical dimension of 165

lakes reported by citizen scientists to estimate volume change. 166

The objective of the LOCSS project is to work with stakeholders 167

and local communities, who are responsible for understanding 168

and documenting the physical behavior of lakes or depend on 169

lake information for decision-making activities. The purpose of 170
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TABLE I
SUMMARY OF SENSORS AND TECHNIQUES USED FOR LAKE AREA ESTIMATION

this article is to understand how different methods for estimat-171

ing lake volume change combining satellite measurements of172

inundation extent with LOCSS measurements of water surface173

elevation, impact our ability to accurately detect variations in174

lake volume. By exploring an ensemble of methods and sensors175

to estimate area and consequently volume changes, we can176

derive a robust understanding of estimation uncertainty for lake177

volume changes. This understanding can be further nuanced for178

a given region that is unique to the season and other geophysical179

drivers, such as cloud cover, rainfall, topography, and water180

surface temperature in regions where lakes freeze.181

This article explores uncertainty in volume estimation, which182

can provide valuable information to the decision-makers or183

stakeholders to make more robust decisions based on uncer-184

tainty. There are various factors that affect uncertainty in vol-185

ume estimation. For example, in South Asia, a key source of186

uncertainty is likely to be cloud cover during monsoon for the187

optical sensors and inundated vegetation for SAR microwave188

sensors. At higher latitudes or mountainous regions where lakes189

freeze, the area estimation may be more challenging due to the190

limitations of detecting inundation variations due to ice cover or191

due to the shadow effect of the high topography.192

In this article, we have explored four different techniques that193

monitor inundation extent, and thus estimate volume (Table I).194

The key research question being addressed is—what is the195

range of uncertainty associated with estimating the volume196

of lakes and wetlands using current sensors, and how does197

this uncertainty vary as a function of geography, season, and198

average environmental conditions? We used data from 94 lakes199

and wetlands, in which water level changes were monitored by200

LOCSS citizen scientists. Validation of water levels collected by201

citizen scientists against automated water level gauges shows202

that they are highly accurate, with uncertainties of less than203

2 cm [30]. Such high performance in lake level estimation can be204

achieved only for very large lakes using satellite altimetry. We205

have also used data from noncitizen programs (such as automatic206

gauging) when necessary to fill in gaps in our lake water height 207

database. 208

The structure of the article is as follows. In Section II, we 209

discuss the study sites and datasets from the satellites and 210

citizen science. In Section III, we discuss the methodology, 211

and in Section IV, we discuss the result. Finally, in Section V, 212

we discuss the implications of our results and summarize the 213

article’s conclusion. 214

II. DATASETS AND STUDY SITES 215

A. Study Sites 216

To better understand the complex nature of uncertainty in vol- 217

ume estimation and how it varies at different locations, we mon- 218

itored 94 lakes and wetlands globally from the LOCSS program 219

(Fig. 1). We focused on water bodies from the South Asian region 220

(Bangladesh, Nepal, and India). For North America, LOCSS 221

lake height data were obtained from water bodies located in 222

Illinois, Massachusetts, New Hampshire, North Carolina, New 223

York, and Washington. In Europe, we had LOCSS lake height 224

data located in South of France in the Pyrénées mountain. 225

Figs. 1 and 2 show the location of the studied lakes and 226

wetlands. The lakes in the USA and France are perennial, 227

with some that freeze during winter. On the other hand, most 228

of the lakes and wetlands in Bangladesh are seasonal, where 229

water accumulates during the months of the monsoon (June to 230

November). Readers can find supplemental information on the 231

water body names and their exact locations from the LOCSS 232

website (https://www.locss.org/). 233

B. Satellite Sensor Dataset 234

For estimating the surface water area, satellites missions 235

Sentinel 1, Sentinel 2, and Landsat 8 were used. Sentinel 1 236

has C-band SAR imaging that can penetrate clouds and has 237

a spatial resolution of 10 m. Revisit time of a single Sentinel 238

https://www.locss.org/
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Fig. 1. Location of LOCSS sites for the citizen science monitoring of lakes
and wetlands.

1 satellite is 12 days, whereas the two-satellite constellation239

offers a 6-day revisit time [32]. Imagery from the Sentinel 2240

multispectral instrument was used with a spatial resolution of 10241

m and revisit time of 5 days. Landsat 8 Operational Land Imager242

(OLI) Tier-1 Surface Reflectance with a spatial resolution of 30243

m and revisit time of 16 days was used. These sensors were244

chosen as they were publicly available and have shown skill245

in detecting water surfaces [33], [34], [35], [36]. The satellite246

data are freely available on Google Earth Engine, a cloud-based247

computing platform ideally suited for a global study of lakes248

[37].249

The water elevation data were collected from the citizen scien-250

tists engaged or partnered via the LOCSS program. For example,251

lake water height data from South Asia were obtained from citi-252

zens engaged with the relevant state or national government wa-253

ter agencies, such as Bangladesh Water Development Board for254

Bangladesh, Kerala Centre for Water Resources Development255

and Management for India, and Nepal Department of Hydrology256

and Meteorology for Nepal. Similarly, most lake height data257

over the USA were obtained from citizen scientists in the area258

with gauges were maintained by local partnering organizations.259

In France, the lake heights were collected by hikers who had260

sent photos of the gauges via smartphone. For more details, the261

reader is referred to [30] and www.locss.org. A previous article262

on LOCSS has shown the water elevation data from citizen263

scientists are reliable and accurate when compared to automated264

gauges [30]. Nevertheless, all LOCSS data were subject to a265

quality control to filter out human errors that represented clear266

outliers. A clear outlier is one where the lake water height data267

is found to be a random anomaly from the underlying trend268

observed before and after. Such outliers were replaced with a269

95% percentile threshold shown in Fig. 3 below. For the case of270

France, the photos sent that were grainy and unreadable were271

discarded. The presence of such outliers occurred in less than272

0.1% of the data. LOCSS gauges were installed in 2017 in the273

USA and France, 2019 in Bangladesh, and 2021 in Nepal.274

III. METHODOLOGY 275

The flowchart for the methodology followed is shown in 276

Fig. 4. The methodology has four key components as follows: 1) 277

extracting water surface area of lakes and wetlands; 2) estimating 278

the volume stored for all the water bodies; 3) repeating steps 1) 279

and 2) using other methods (Table I) to create an ensemble of 280

estimates; and 4) comparing the uncertainty in estimated volume 281

as a function of region, nominal lake area, and geophysical 282

factors, such as cloud cover and water surface temperature. From 283

here onwards, we will use the terms uncertainty and uncertainty 284

in volume estimates interchangeably. 285

A. Extracting Water Surface Area 286

1) Landsat 8: The Landsat 8 OLI/TIRS (L8) sensor was used 287

to estimate the water surface area through a variety of water clas- 288

sification techniques. Atmospherically corrected L8 data using 289

the Land Surface Reflectance Code [38] were used for the article. 290

Two water classification techniques were used. The first was the 291

DSWE [14]. DSWE has the ability to extract the water surface 292

where the pixel is partially covered with vegetation and water. 293

In addition to Landsat imagery, DSWE uses a digital elevation 294

model, slope, hill, and cloud shade. These parameters are calcu- 295

lated using the Fmask function [39]. The output of the DSWE 296

consists of six possible classes: not water, water—high confi- 297

dence, water—moderate confidence, potential—wetland/partial 298

surface water conservative, and masked out due to the cloud, 299

cloud shadow, or snow. The second technique used to extract 300

the water surface area is the MNDWI. Xu [12] developed the 301

definition using the green band with short wave infrared band 302

to detect the water feature in built-up areas where a threshold of 303

0.3 for the MNDWI was found to be a robust choice [40], [41]. 304

MNDWI can be calculated using (1) below. Due to multiple 305

equations used in the DSWE method, readers are advised to 306

read Jones [14] for more details 307

MNDWI =
Green − SWIR
Green + SWIR

. (1)

2) Sentinel 2: Optical imagery from Sentinel 2 (S2) sensor 308

has a spatial resolution of 10 m, which is an improvement over 309

the Landsat 8 spatial resolution of 30 m. The DSWE technique 310

was also applied to Sentinel 2 images. As the DSWE algorithm 311

was designed specifically for the L8 images, scaling of S2 312

reflectance data is required to make DSWE work for S2 data. 313

Surface reflectance transformation functions between S2 and 314

L8 can be used to transform the S2 bands to L8 bands. In the 315

article, we used the transformation function developed by Zhang 316

et al. [41] to linearly map the S2 bands to L8 bands and use the 317

DSWE algorithm. For the MNDWI technique on S2 imagery, 318

no transformation is required according to the study conducted 319

by Du et al. [42]. 320

3) Sentinel 1: Sentinel 1 is an angle looking C-band SAR 321

that sends radar signals which can penetrate clouds. Water clas- 322

sification using the Sentinel 1 imageries was accomplished with 323

the help of the backscattering thresholding technique. Nonwater 324

surfaces usually have high roughness and thus, they have high 325

backscattered energy as compared to the water-like surface. 326

www.locss.org


IE
EE P

ro
of

KHAN et al.: UNDERSTANDING VOLUME ESTIMATION UNCERTAINTY OF LAKES AND WETLANDS 5

Fig. 2. Location of LOCSS gauges in (a) USA (59 lakes), (b) Bangladesh (20 lakes), (c) Nepal (1 lake), (d) France (13 lakes), and (e) India (1 lake).

Fig. 3. Example of water surface elevation before and after correction of outliers.

The water-like surfaces appear dark in the imagery because of327

their smooth surface. Hence, this phenomenon can be used to328

extract the water surface extent by putting a threshold on the329

backscatter values. However, one of the drawbacks of the SAR330

is speckle noise, which degrades the quality of the image and331

causes information loss. Over the years, various techniques have332

been used to reduce the speckle noise, such as wavelet transform333

[43] and mean–median filters [44]. We used a focal median filter334

with a 30 m × 30 m window. Incidence angle also plays an335

important role in the image preprocessing; for the water surface336

classification, we considered look angles from 31.7° to 45.4°.337

More details on this choice are described by Ahmad et al. [29].338

With the preprocessed image, a backscatter threshold of −13339

db was selected to identify the water body, as suggested by Liu340

[45].341

B. Extracting Water Surface Elevation 342

The water surface elevations were gathered with the help 343

of citizen scientists. The data for all the water bodies were 344

downloaded from the LOCSS website where they are publicly 345

available. 346

C. Estimating the Volume Stored and Generating Uncertainty 347

Ensemble 348

After estimating the water surface area and extracting the 349

water surface elevation, volume of water stored above the min- 350

imum observed level was estimated for each of the techniques 351

and sensors. Satellite water extent data were used for days that 352

matched or were within 3 days of the measurement date of 353

citizen scientists from LOCSS. To estimate the volume variation, 354



IE
EE P

ro
of

6 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

Fig. 4. Flowchart for methodology used for exploring uncertainty of satellite-based lake volume estimation.

we linearly interpolated the water surface area data, so that355

the timestamps of both water elevation and interpolated water356

surface area were the same, which makes it easier to calculate357

the volume change. The information of the exact bathymetry358

of the water bodies was not available, so we estimated the359

volume stored with respect to the lowest observed water surface360

elevation in the time series, similar to Ahmad et al. [29] who361

had earlier applied citizen scientist height data for northeastern362

wetlands of Bangladesh. The lowest water elevation observation363

was obtained from the LOCSS website over the period of the364

study. For simplicity, many articles in the past have assumed365

trapezoidal bathymetry [29], [30], so we also assumed trape-366

zoidal bathymetry. Pyramidal bathymetry of lakes can also be367

assumed as proposed in Cretaux et al. [26] but internal compar-368

ison done between both hypotheses have usually yielded very369

similar results. Hence, volume stored by the water body at a370

given time can be calculated as371

Vt =
(ht − hmin) (At + Amin)

2
[L3] . (2)

Here, in (2), ht is the water elevation at time t and hmin is372

the lowest water elevation of the time series at each lake. At373

is the area of the lake at time t and Amin is the minimum area of374

the lake. The volume estimated in this fashion using (2) yields375

the volume that can be estimated from the lowest level observed376

in the satellite record. Understandably, this approach may yield377

large errors when the difference between ht and hmin is large378

enough to disqualify the assumption of trapezoidal bathymetry379

between those two heights. In our scrutiny of bathymetries above380

the minimum observed level, lakes that experience large height381

difference of many meters, such as in Bangladesh (South Asia),382

follow a very flat and steady trapezoidal bathymetry. In regions383

where bathymetry shape may be irregular over large heights,384

such as in the studied lakes of Europe, USA, India, and Nepal, 385

the height differences reported by citizens are usually not large 386

enough. 387

The volume stored was estimated for all four techniques used 388

in the article (Table I), and an ensemble of the volume estimates 389

was generated. Fig. 5 shows an example of the ensemble of 390

estimated volumes. 391

D. Studied Factors Affecting Uncertainty 392

1) South Asia: To understand the complexity of uncertainty 393

in estimating volume, various factors contributing to the uncer- 394

tainty were studied. Countries, such as Bangladesh, India, and 395

Nepal, have a monsoonal climate, which brings extensive cloud 396

cover and a high amount of rainfall for 3–5 months. Hence, 397

precipitation patterns and cloud cover were compared with 398

uncertainty. Optical sensors have a limitation that they cannot 399

penetrate the clouds. The complementary nature of optical and 400

radar sensors with unique strengths and weaknesses collectively 401

give rise to estimation uncertainty. Gridded precipitation data for 402

Bangladesh were downloaded from the ERA5 hourly precipita- 403

tion and gridded precipitation data for India were downloaded 404

from Indian Meteorological Department. The cloud cover data 405

were collected from information provided in the Landsat 8 406

satellite data product. Table II shows the information about the 407

dataset used. 408

2) North America: In the regions of North America studied 409

here, the monsoon is not as dominant, unlike South Asia. We 410

therefore studied the uncertainty in volume estimation as a 411

function of temperature and cloud cover. The water surface tem- 412

perature of lakes was estimated using the Landsat 7 Collection 1 413

Tier 1 (L7). Low-gain Thermal Infrared 1 Band (B6_VCID_1) 414
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Fig. 5. Schematic showing how ensemble and range of estimates on volume change are generated using different methods and sensors.

TABLE II
ADDITIONAL INFORMATION ON THE DATASET USED IN THE STUDY

was used to estimate the temperature, while the cloud cover over415

the water bodies was estimated using L8.416

3) Europe: In Europe, we studied the water bodies in France.417

All of the lakes in France were in highly mountainous areas of418

the Pyrenees. Thus, with the exception of Nepal, these lakes419

were located in the most topographically variable landscape of420

any LOCSS lakes. These lakes also freeze in the winter. We ran421

the same analysis on France as we did on North America.422

E. Estimating the Uncertainty in Volume Estimation423

We chose a metric for uncertainty in volume estimation that424

provides us with an idea for average spread of the estimated425

volumes over time relative to the statistically expected volume426

of a water body (also over time). Here, the expected volume is 427

assumed to be the arithmetic mean of the volumes estimated 428

by the four methods. We call this metric the “time-averaged 429

uncertainty.” This time-averaged uncertainty metric is calcu- 430

lated using (3). Here, we use the time-averaged uncertainty 431

metric in relative terms normalized by the mean volume to 432

allow comparison across all lakes and regions. A time-averaged 433

uncertainty metric value of less than 1 means that the current 434

suite of satellite sensors and methods is generally able to estimate 435

volume variations with a spread that is less than the mean value, 436

and hence the uncertainty may be considered acceptable most 437

times. Vice versa, an uncertainty metric value of more than 1 438

means the spread of uncertainty is significantly larger than the 439

mean value itself, and hence the volume uncertainty may be 440
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Fig. 6. Volume stored and uncertainty time-series for Korchar wetland in Bangladesh.

Fig. 7. Time-series of uncertainty of volume estimation of Dekhar Haor wetland in Bangladesh.

considered unacceptable. Fig. 6 illustrates how the time-specific441

uncertainty in the volume varies for the Korchar wetland in442

Bangladesh over time to yield the time-averaged uncertainty443

metric defined in (3).444

The time-specific behavior of uncertainty is particularly suited445

for developing a temporal understanding of seasonal water bod-446

ies, such as wetlands in South Asia. During the development of447

a wetland in the monsoon season, the spread of the ensemble448

may be smaller yet the uncertainty metric for that specific time449

can be higher because of time-specific low mean for estimate450

volumes. Such a high time-specific uncertainty can be indicative451

of the limitation of the sensors for water bodies with very small452

volumes and variations at that time. As these wetlands develop453

and the volume stored increases, the time-specific uncertainty454

metric can decrease if the collective precision of the sensors455

holds. Conversely, the opposite can happen with time-specific456

uncertainty rising as volume increases. We show one such ex-457

ample in Fig. 6(a) and (b). A red line is shown to demonstrate458

the case for a wetland in Bangladesh where the time-specific un-459

certainty rises despite increase in volume after the height of the460

monsoon in August. This corroborates the fact that uncertainty461

of volume estimation can be dependent on many factors, many of462

which are time-specific (such as cloud cover, land temperature,463

growth of vegetation, and irregular/nontrapezoidal bathymetry) 464

Time averaged Uncertainty=

∑n
0

[
Max Volumet−MinVolumet

MeanVolumet

]
∑n

0 t
.

(3)

IV. RESULTS 465

In this section, we demonstrate a few examples of time- 466

varying uncertainty (not the time-averaged uncertainty) that 467

are representative of lakes and wetlands for their regions. 468

Fig. 7 shows the volume estimation uncertainty of a wetland 469

in Bangladesh. In general, the wetlands in Bangladesh are fully 470

inundated during May–December, while from January to April, 471

they are often dry. It is seen that during higher cloud cover and 472

precipitation, the uncertainty spread is high. Fig. 8 shows the 473

ensemble of Pookode lake in Kerala, India. Kerala in general 474

receives two monsoons. One is the southwest monsoon (June– 475

September) and the other is the northeast monsoon (October– 476

December). Essentially, the entire period of June–December is 477

characterized by extensive cloud cover. We observe that vol- 478

ume stored and uncertainty in volume are both higher as the 479

monsoons retreat in December with gradual decrease as cloud 480
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Fig. 8. Time-series of uncertainty of volume estimation in Pookode lake in Kerala (India).

Fig. 9. Ensemble of volume change estimates by different methods and sensors for Cassidy lake in Washington state (USA). Note: here, y-axis represents volume
change rather than volume.

cover and precipitation decreases in April. The pattern repeats481

itself from June to December again as the two monsoon seasons482

complete their cycle.483

For U.S. lakes, we studied volume uncertainty as a function of484

cloud cover and water surface temperature, given the tendency485

of some lakes in upper latitudes to freeze during winter. In Fig. 9,486

we show the uncertainty spread for Cassidy Lake (Washington487

State), which is found to be high during freezing conditions.488

When volume stored is low, the uncertainty spread is also found489

to be quite high. As there are likely many other controlling490

factors, water temperature provides only a partial explanation 491

of the temporal behavior of uncertainty. 492

To estimate the benchmark volume change, we used higher 493

spatial resolution dataset from Planet at 3 m [48]. The as- 494

sumption we make here is that a significantly higher spatial 495

resolution visible dataset during clear sky conditions should be 496

able to capture areal extent and hence volume changes much 497

more accurately and precisely than the satellite sensors used 498

in this article at coarser spatial resolution. We understand this 499

assumption may not always hold as there are other factors related 500
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Fig. 10. Ensemble volume change estimates by different methods and sensors for Rara lake in Nepal. Note: here, y-axis represents volume change rather than Q3
volume.

Fig. 11. Time-averaged uncertainty metric in volume vs. nominal lake area for (a) Washington (USA), (b) Bangladesh, India, and Nepal, (c) Illinois, (d) New
York, Massachusetts, North Carolina, and New Hampshire, (e) France. Lakes below the red line are assumed to yield acceptable uncertainty using the threshold
value of 1.

to the bathymetry, color of water, and surrounding background501

region that can also play a compounding role regardless of502

sensor’s spatial resolution. Nevertheless, we believe that use of503

3-m Planet data is worthwhile as it provides an “alternative” to504

readers to help them grasp the nature of uncertainty they may505

expect in using the coarser resolution satellite data of S1, S2,506

and Landsat. Table III shows the extent of the water bodies as507

well as their benchmark volume (second column from left). We508

estimated the volume at the time when volume of water stored509

is maximum and minimum. We found that our ensemble mean510

was close to the benchmark volume and the range of ensemble 511

volumes clearly encapsulates the benchmark volume. 512

Fig. 11 shows the time-averaged uncertainty metric (3) for all 513

the water bodies as a function of the nominal lake area. Fig. 11 514

is a plot showing the aggregate behavior volume estimation 515

uncertainty for each region as lake area changes. Fig. 12 shows 516

the same but for areal estimation uncertainty for each region as 517

nominal lake area changes. The idea is to understand if there is 518

a threshold area for a lake size below which the time-averaged 519

uncertainty metric is unacceptable (>1). From Figs. 11 and 12, 520
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TABLE III
BENCHMARK VOLUME CHANGE OF SELECTED WATER BODIES USING HIGHER RESOLUTION DATA IN COMPARISON TO SATELLITE-BASED METHODS

the percentage of water bodies having uncertainty metric less521

than or equal to 1 in Washington, South East Asia (Bangladesh,522

India, and Nepal), Illinois, and East Coast USA (New York,523

Massachusetts, North Carolina, and New Hampshire) is found524

to be 75%, 55%, 75%, and 71%, respectively. These numbers525

are believed to be statistically robust according to our tests of526

significance using the student t-test. Using the student t-test,527

we found within the 95% confidence interval, the mean time-528

averaged uncertainty metric of lakes in South Asia to be 1.11529

(±0.16). Similarly, for lakes in the USA, the mean uncertainty530

metric is 0.71 (±0.184) at the 95% confidence interval. What531

is evident from our tests of significance is that the results we 532

have derived for time-averaged uncertainty are significant as the 533

variability (shown within parentheses) is an order lower than 534

the mean estimate in the 95% confidence interval based on the 535

student t-test. 536

To understand the role played by individual area estimation 537

methods in volume estimation uncertainty, we ranked each of the 538

four methods from highest to lowest average volume estimates 539

for a give lake. In Fig. 13, we show in a four panel plot the 540

methods for each lake with highest estimate (upper most panel), 541

second-highest estimate (middle panel), second-lowest estimate 542
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Fig. 12. Time-averaged uncertainty metric in areal extent vs. nominal lake area for (a) Washington (USA), (b) Bangladesh, India, and Nepal, (c) Illinois, (d) New
York, Massachusetts, North Carolina, and New Hampshire, (e) France. Lakes below the red line are assumed to yield acceptable uncertainty using the threshold
value of 1.

Fig. 13. Ranking of the four methods shown as a function of nominal lake area on x-axis. A unique color is assigned to each of the four techniques/sensor. Each
dot represents a particular lake and a particular method applied for volume change analyses. Each panel shows how many times a particular technique/sensor, as
defined by its unique color, produces the highest (upper left), second highest (upper right), third highest (lower left), and least (lower right) volume change estimate.
The entire ensemble of studied lakes for a given technique/sensor is represented by the total number of dots pertaining to the specific color across all panels, or the
total number of dots in a given panel. The panels collectively show that no particular method is biased in over or underestimating from the mean of the ensemble.

(second panel from bottom), and lowest estimate of volume543

(bottom most panel). The idea is to see if performance of544

methods is consistent across lakes or if other geophysical factors545

pertaining to the lake and the ambient environment control the546

tendency to estimate the highest or lowest value of the ensemble.547

In general, the DSWE method using Sentinel-2 and Sentinel-1548

based backscattering method have a tendency to yield higher549

volume estimates. However, when looked as a whole, there 550

does not seem to be single method that is found to consistently 551

estimate the highest, lowest volume, or median volume. This 552

indicates that in this article of lake volume estimation uncer- 553

tainty, there is no single method that can be filtered out to 554

minimize uncertainty and that all methods should be considered 555

collectively to improve our understanding of uncertainty. 556
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V. DISCUSSION AND CONCLUSION557

We studied 94 lakes and wetlands around the world where558

LOCSS gauges were installed to record water elevations mea-559

sured by citizen scientists. We defined time-averaged uncertainty560

metric and used a value of 1 as the cutoff for acceptable uncer-561

tainty (<1) or unacceptable uncertainty (>1). When looked as562

a whole for all the lakes studied, there is no clear pattern in our563

findings where lakes larger than a certain threshold can claim564

to experience higher skill in estimation of volume. However,565

at individual regions, there are some nuanced patterns. For566

example, lakes in Washington (Fig. 11, panel a) and France567

(Fig. 11, panel e) show a clear dependency of uncertainty as568

a function of area where the time-averaged uncertainty metric569

decreases as nominal lake area increases. In South Asia, lakes570

larger than 0.05 km2 (mostly in Bangladesh; Fig. 11, panel b)571

experience an uncertainty metric of less than 1 in 75% of cases572

without a clear dependency on lake area. This implies that the flat573

terrain nature of Bangladesh topography combined with more574

dynamic hydrometeorological and land use patterns compared575

to other regions studied pose significant challenge to lake vol-576

ume estimation. In the USA, lakes east of the 108th meridian577

(Colorado Rockies) exhibit considerably lower uncertainty in578

volume estimation compared to the Pacific Northwestern region579

of Washington (compare panels a, c, and d in Fig. 11). This un-580

certainty decreases gradually for lakes located further eastwards,581

starting from Illinois to Eastern USA (Massachusetts, New York,582

and North Carolina). For example, in Washington state, the583

average time-averaged uncertainty appears to be around 20%584

higher than lakes in Illinois which are about 50% higher than585

lakes in the eastern USA. It is clear that much smaller sized586

lakes in the eastern USA can be estimated with considerably587

less uncertainty. In France, we observe that the spread of the588

uncertainty is consistently high and exceeding the threshold589

value of 1. One of the plausible reasons for this can be the shadow590

of the mountains. The LOCSS gauges are installed in south of591

France, near the Pyrenees mountains. While digitizing the lakes592

in France, mountains projecting a shadow on water bodies were593

observed. Ji et al. [46] discussed how mountain shadows can594

be misclassified as water pixels. We should however exercise595

caution in interpreting the volume estimation uncertainty pattern596

for each region (e.g., USA, France, and South Asia) given that597

sample of lakes studied here are not necessarily a statistically598

large sample to represent all the regions.599

Our lake height data were obtained from the citizen sci-600

ence program of LOCSS, which has the additional objective601

of validating and improving lake products anticipated from602

the recently launched Surface Water and Ocean Topography603

(SWOT) mission. The SWOT satellite mission is a joint mission604

of the NASA and Centre National d’Etudes Spatiales (CNES)605

with contributions from the Canada Space Agency and the606

United Kingdom Space Agency. SWOT is planned for launch607

in November 2022 [47]. It will be the first satellite of its kind608

that will report water surface elevation and water surface area609

simultaneously with a revisit time of 21 days or less at a given610

location. The primary instrument on SWOT is Ka-band Radar611

Interferometer, which uses radar interferometry and SAR, which612

gives high-resolution water elevation and inundation extent [47].613

Currently, as noted in this article, to estimate the volume, water 614

surface area is derived from satellite sensors while the elevations 615

are obtained either from concurrently flying altimeters or from 616

the in-situ data. SWOT, with its simultaneous measurement of 617

area and elevation, will improve our ability to estimate volume 618

more consistently. Moreover, SWOT is a swath interferometer 619

which will cover the whole Earth and monitor lakes larger than 620

250 × 250 m. This will be an unprecedent view of the lake 621

storage change dynamics at the global scale. 622

Our findings therefore have implications for the SWOT mis- 623

sion. First of all, the availability of LOCSS gauge data from 624

citizens can be expected to provide valuable validation data to 625

compare SWOT-estimated volume changes once SWOT starts to 626

provide lake area and elevation simultaneously. Second, SWOT 627

observables could be combined with pre-SWOT satellite data to 628

create higher frequency estimates of lake volume with lower es- 629

timation uncertainty. Armed with a general idea of what regions, 630

specific factors and the minimum lake size matter in achieving 631

an acceptable uncertainty, LOCSS gauges can be strategically 632

expanded or the data quality for lake storage change can be 633

flagged accordingly. 634

The estimation of uncertainty for volume is also useful for 635

practical applications at ungauged regions lacking historical 636

records, such as sizing of surface water storage facilities or 637

flood control structures. For example, if an urban settlement is 638

planned in the ungauged region with no historical records, where 639

lakes are the only source of surface water, then the freshwater 640

storage and distribution system size would need to be based on 641

the minimum (worst case) scenario of lake volume experienced 642

over a sufficiently long period. Similarly, a flood protection 643

facility in the same ungauged region would have to be designed 644

based on the maximum (worst case) scenario of lake volume 645

observed over a long record. The range of estimation uncertainty 646

gleaned from an ensemble of satellite sensors and techniques 647

facilitates such societally relevant application in the design 648

of water management facilities at regions lacking historical 649

in-situ records. In a previous effort based on LOCSS [29], the 650

estimation of total volume stored in northeastern Bangladesh 651

with uncertainty has already triggered a conversation by the 652

Bangladesh Government to exploit any excess surface water for 653

commercial revenue-generating purposes (personal communi- 654

cation with Director General of Bangladesh Water Development 655

Board). 656

This article is not without limitations. One key limitation is 657

the short period of LOCSS data for many regions, such as South 658

Asia. Lack of in-situ three-dimensional bathymetry over time to 659

capture the nonstationarity due to sand deposition or transport 660

can also be an issue. An accurate bathymetry of the lakes can 661

also help in constraining our estimates further. We hope these 662

limitations can be addressed in a future article as the LOCSS data 663

continue to grow with more participation from citizen scientists 664

around the world. 665
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