A Global Capacity Building Vision for Societal Applications of Earth Observing Systems and Data: Key Questions and Recommendations

3

Faisal Hossain¹, Aleix Serrat-Capdevila², Stephanie Granger³, Amy Thomas⁴, David Saah⁵,
David Ganz⁶, Robinson Mugo⁷, MSR Murthy⁸, Victor Hugo Ramos⁹, Eric Anderson¹⁰, Guy
Schumann¹², Rebecca Lewison¹³, Dalia Kirschbaum¹⁴, Vanessa Escobar¹⁴, Margaret Srinivasan³,
Christine Lee³, Naveed Iqbal¹⁵, Elliot Levine¹⁶, Nancy Searby¹⁷, Lawrence Friedl¹⁷, Africa
Flores¹¹, Dauna Coulter¹¹, Dan Irwin¹¹, Ashutosh Limaye¹¹, Tim Stough³, Jay Skiles¹⁷, Sue
Estes¹⁰, Bill Crosson⁹, Ali S. Akanda¹⁹,

 10

 11

 12

 13

 14
 Submitted to Bulletin of American Meteorological Society (BAMS)

 15
 As Workshop Summary

 16

 17
 Date Submitted: August 26, 2015

 18

 19

 20
 Affiliation of Authors

 21
 I University of Werkington 2 University of Asignment 2 Let Dependence Lebenderer Col

21 1-University of Washington; 2-University of Arizona; 3-Jet Propulsion Laboratory-California 22 Institute of Technology; 4-Battelle Institute; 5-University of San Francisco; 6-Asian Disaster 23 Preparedness Center; 7-Regional Center for Mapping of Resources for Development; 8-24 International Center for Integrated Mountain Development; 9-Consejo Nacional de Areas 25 Protegias (CONAP) – Guatemala; 10- University of Alabama-Huntsville; 11-NASA Marshall 26 Space Flight Center; 12-University of California-Los Angeles; 13-San Diego State University; 27 14-NASA Goddard Space Flight Center; 15-Pakistan Council for Research on Water Resources; 28 16-Mercy Corps; 17-NASA-HO; 18-NASA Ames Center; 19-University of Rhode Island 29

- 30
- 31
- 32
- 33 34

35

36

.

Corresponding Author Faisal Hossain Department of Civil and Environmental Engineering University of Washington Email: fhossain@uw.edu

INFO BOX

40	TITLE: Globalizing Societal Application of Scientific Research and Observations from Remote
41	Sensing: The Path Forward.
42	WHAT: Recognizing that capacity building is key to globalizing societal applications of Earth

- 43 observing systems and data a community of Earth scientists who develop applications or
- 44 solutions, and the stakeholders who need them, provided consensus-based input on key questions
- 45 and recommendations to achieve a vision for global and resilient societal applications of Earth

46 observations.

- 47 WHEN: June 23-25, 2015
- 48 WHERE: Tacoma, Washington

50 INTRODUCTION

51 Capacity building using Earth observing (EO) systems and data (i.e. from orbital and non-orbital 52 platforms) to enable societal applications includes the network of human, non-human, technical, 53 non-technical, hardware and software dimensions that are necessary to successfully cross the 54 valley (of death; see NRC, 2001) between science and research (port of departure) and societal 55 application (port of arrival). In many parts of the world (especially where ground-based 56 measurements are scarce or insufficient), applications of EO data still struggle for longevity or 57 continuity for a variety of reasons, foremost among them being the lack of resilient capacity. An 58 organization is said to have resilient capacity when it can retain and continue to build capacity in 59 the face of unexpected shocks or stresses. Stresses can include intermittent power and limited 60 internet bandwidth, constant need for education on ever-increasing complexity of EO systems 61 and data, communication challenges between the ports of departure and arrival (especially across 62 time zones), and financial limitations and instability. Shocks may also include extreme events 63 such as disasters and losing key staff with technical and institutional knowledge.

64 The combined observational power of the multiple earth observing (EO) satellites and 65 non-orbital platforms has untapped potential waiting to be harnessed to produce more durable 66 societal benefits around the world (Hossain, 2015). The community comprising scientists and 67 stakeholders now needs to be ready to take complete advantage of the prolific amount of 68 scientific output and remote sensing data that are emerging rapidly from satellite EO missions 69 and convert them efficiently into products that can support decision making for end users. So 70 how do we take full advantage of Earth observational capability for a more sustainable, happier 71 and safer future in the coming decades?

To address this key question and strengthen the voice of the global societal applications and capacity building community, a three-day workshop was convened to debate issues and formulate a vision and path forward. Such a roadmap that relies on the use of EO data is expected to enable more widespread societal applications in fields such as water resources, disaster management, food and agriculture, public health and ecosystem services around the world.

78 There were 27 in-person attendees at the workshop, including experts from the applied 79 sciences community already engaged in EO-based capacity building across various themes for 80 the stakeholder community, and from the Satellite EO data community, as well as several 81 international stakeholder agencies with a need for real-world application of EO systems and data. 82 Participants were selected by invitation to represent as much breadth in various themes (such as 83 water, health, ecosystem function, agriculture and disasters) as well as geographic relevance 84 (Asia, Africa, Americas). Numerous and compounding issues needed to be explored, including 85 uncertainty, end user perception, location-specific technical and non-technical operating 86 constraints, human resources, data latency, scalability of solutions, widely varying social and 87 cultural boundary conditions for scientific applications, and exploring business models 88 appropriate for the coming decade. The key discussion point of the workshop throughout the 89 three days was "What do we need to do now as a community that will enable greater and more 90 successful societal application of Earth observations from space?"

91

After the inaugural session, the following themes were addressed in order:

- 92 1. public health and air quality
- 93 2. disaster management
- 94 3. ecosystems function

- 95 4. water resources
- 96 5. food and agriculture

97 The discussion period during each session focused on capacity building and globalizing 98 EO-based societal applications. In each discussion period, international participants were asked 99 to voice viewpoints, ideas, and questions from their regions, keeping the critical issue of building 100 resilient capacity in mind. To capture as many important themes as possible, particularly those 101 that are cross-cutting (water-food, health-water, water-disaster and energy-water) with important 102 societal applications, the last session on the second day included an extended discussion period 103 for miscellaneous items.

104 To target the discussions and elicit a vision for the future, five key questions were 105 provided to all participants for consideration:

- 106 1. What types of value-added products/information should we provide for resource107 constrained public and national stakeholder communities and agencies?
- 108 2. What types of industry or private-sector partnership will most benefit the scientific
 109 research needed to meet societal needs?
- 3. How can we leverage the combined observational power of our many Earth observing
 satellite missions (current and future) in a synergistic manner to rapidly multiply societal
 applications?
- 4. How do we make the scientific innovation from satellite remote sensing data trigger
 durable and robust applications that do not require long-term incubation or external
 support?

5. From an economic standpoint, what should be the optimal business model between
scientific communities and the stakeholders to support a sustainable partnership?

118

119 DEVELOPING THE GLOBAL CAPACITY BUILDING VISION

120 Moving forward in the coming decade, the capacity building community that is reliant on 121 EO data will play a pivotal role through satellite and non-orbital EO system in solving three 122 grand challenges facing humanity. These challenges are: (1) food security, (2) water access and 123 availability, and (3) disaster risk reduction. The capacity building community also needs to help 124 the world achieve the 17 Sustainable Development Goals set by the United Nations (2016). For 125 example, is the world ready to feed 9 billion people by 2050, most of whom will be living in 126 megacities with a different set of constraints on demands for water, energy, and health? How 127 can the global capacity building community using EO data play a leadership role as one of the 128 many stewards of the planet to help achieve more sustainable living? The workshop participants 129 noted that it was time for the EO-based capacity building community to broaden the focus of 130 current EO application programs (such as NASA's Applied Sciences program) to tackle these 131 issues that are existential to planet Earth and can be addressed through the application of EO-132 based science.

The participants noted that the community must also recognize the need to build capacity in the human (ergonomic) dimension for the following entities: (1) Space Observation Agency scientists-trainers who work at the root level of EO data production, (2) the future workforce from across the board who will need to interact with EO data, (3) government and professional end-users, and (4) stakeholder agencies with their scientific capacity. In addition, there is a need to build technology capacity to address different needs, abilities, and practices adopted by end

139	users. For example, as a vision for where the global capacity building program could be in 2027
140	for water resources, the following was put forward at the workshop:
141	1. Using the combined suite of Earth observations available from space agencies of the
142	world (e.g. US, France, European Union, Japan, India etc.), enable all people to know
143	where the nearest safe water to drink is that day, the next season, the next year, and the
144	next 5, 10, 25, 50 years.
145	2. Develop applications in collaboration with decision makers responsible for populations
146	most vulnerable to water stress.
147	3. Build institutional skills around the world to sustainably manage water resources over the
148	long term.
149	4. Facilitate successful and widespread use of Earth observations in water management
150	decisions by Ministries of Water, Natural Resources, Agriculture and Energy around the
151	world.
152	
153	General Recommendations for Globalization of EO-based Applications and Capacity
154	Building
155	Workshop participants noted the following recommendations for globalization of applications
156	and capacity building efforts:
157	1. Societal applications should continue to expand and be the primary focus of new
158	satellites and sensors, with support from airborne sensors and models.
159	2. The community needs to take advantage of the combined observational power of multiple
160	platforms and Earth observing systems, with a focus on cross-cutting themes such as
161	water-food, water-energy or water-disaster.

- 162 3. New Earth observing satellites must provide timely data at the appropriate resolution to163 support country-level application requirements.
- 164 4. Space agencies need to find a balance between research products and real-time products.
- 165 It is often the real-time products that tell compelling stories on the societal value of
- 166 operations or nowcasting for prime-time news. Together with stories generated from
- 167 research-grade products, such media exposure helps with public understanding of a
- satellite mission's societal value. Research products should ultimately advance the
- 169 quality and timeliness of future real-time products.
- 170 5. There should be increased consideration/use of nanosatellites and other innovations for171 applications as appropriate.
- 172

173 International Perspectives on EO-based Capacity Building

174 International participants provided perspectives on capacity building relevant to their region. For 175 South Asia (e.g. Hindu Kush-Himalaya nations), the key issue noted in building durable 176 applications was recognizing "indigenous" knowledge and explicitly using it in the design of 177 decision-making systems that uptake Earth observations. The steps required to achieve this are 178 summarized as follows: (1) popularize and bring local flavor to dissemination systems; (2) 179 identify and facilitate local institutional interface and uptake systems; (3) develop a bigger 180 canvas/tier of scientific, policy, and of the local user community; (4) develop a handful of 181 facilitators and practitioners (transitioning science products to actionable products; awareness 182 building over large and diverse users); and (5) enhance citizen understanding of web 183 applications, gathering more feedback and citizen science information.

184 In Southeast Asia (e.g. Lower Mekong nations), participants noted that solutions built for 185 disaster risk reduction using EO will have to be compatible with country-specific skills and 186 human resource settings that represent wide variability in the region. Southeast Asian countries 187 have contrasting capacities for the uptake and sustenance of Earth observations (a good example 188 is Vietnam with strong capacity and neighboring Cambodia with weak capacity). Another issue 189 noted was that, given the extensive nature of dam building in the Mekong River basin, having a 190 vertically accurate digital elevation model (DEM) (better than the 30 m Shuttle Radar 191 Topography Mission (SRTM) data) is now a key priority for building applications for resource 192 management.

193 In the Eastern and Southern Africa region, high population growth and increasing 194 demands on food and water are the two critical issues needing improved capacity building for 195 EO data. Extreme weather, disasters, and their impacts on biodiversity are also key issues. Frost 196 is becoming an increasingly common phenomenon, affecting Kenya's tea production. Forest 197 fires, deforestation, land use change and over-appropriation of water resources in many basins 198 are the main causes behind the progressive strangulation of wildlife sanctuaries and destruction 199 of natural habitat and ecosystem services. EO data and systems have a major role to play toward 200 understanding and predicting the impacts of global change, and helping manage mitigation and 201 adaptation strategies for the benefit of regional livelihoods, disaster reduction and environmental 202 health.

Like many other regions, international workshop participants noted that resource management was a key decision-making need for Mesoamerica, with a clear demand of EO systems and data. The goal by 2027 for this region's stakeholders would be to evolve to a more 'proactive' approach of mapping fires based on forecast or incidence probabilities by taking

advantage, for example, of the Fire Urgency Estimator in Geosynchronous Orbit (FUEGO).
Earth observation's role in disaster management in the region currently remains confined to postdisaster analysis. Future needs include a full-cycle 'in-house' capacity for disaster
forecasting/prediction, mitigation, adaptation (risk reduction) and response/recovery through
local institutions. In regard to water issues, the region lacks sustained capacity for water quality
management. Future needs point toward more water management institutions taking advantage
of EO data from relevant EO systems.

214

215 CONCLUSION

216 Sustainable livelihoods with human and economic development can only be made possible in a 217 context of food security, water availability and environmental health. Societal applications of 218 Earth Observations should be developed to monitor and support progress toward these goals. In 219 developing regions of the world, easy access to safe water means reduced malnutrition, 220 morbidity and child mortality, as well as time and the opportunity for girls, and children in 221 general, to attend school. Health and food security are dependent on water availability and 222 ecosystem health, which in turn is highly influenced by local resource management strategies. 223 Disaster risk is modulated by land use cover and the ability of ecosystems to provide regulating 224 and provisioning services. Because of the integrated nature of human-natural systems (and the 225 need for environment-water-health-livelihoods sustainability/security), societal applications must 226 draw on the combined observational power of different sensors and products at adequate 227 resolutions in space and time. While research and retrospective products enable useful hindsight, 228 operational real-time products are essential to support present decisions and strategies. Earth 229 scientists must work with the practitioner and stakeholder communities to best tackle the

challenges on the ground and develop innovative efforts using large missions, nanosatellites andcrowdsourcing feedbacks.

232 Given the above, the science community that is reliant on EO data for exploring earth 233 science has a responsibility to regularly update and prioritize societally-relevant scientific 234 questions and the Earth observations required to answer them. For the case of space agencies and 235 its EO systems and data that various organizations maintain, a key mechanism by which the 236 science community is engaged in such a task is through the National Research Council (NRC). 237 The NRC conducts a review every 10 years, known as Decadal Survey that provides a science 238 community consensus on key questions and recommendations. Recognizing that capacity 239 building is key to globalizing societal applications of EO systems and data, the workshop held 240 during June 23-25, 2015, in Tacoma provided one such consensus-based input on key questions 241 and recommendations from a community comprising Earth scientists, stakeholder organizations 242 and end-users. It is hoped that the workshop findings will initiate a sustained atmosphere of 243 meaningful interaction within this community in the coming years to achieve the global capacity 244 building vision for societal applications of Earth observations outlined earlier.

245 Acknowledgements

A large portion of this workshop to bring scientists and stakeholders together was facilitated by
NASA E2 Workshop program. Some of the co-authors from Jet Propulsion Laboratory were
supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration.

250 Reference

Hossain, F. 2015: Data for All: Using Satellite Observations for Social Good, *Eos*, 96,

doi:10.1029/2015EO037319. Published on 14 October 2015.

- 254 National Research Council, 2001: Crossing the Valley of Death: From Research to Operations in
- 255 Weather Satellites and Numerical Weather Prediction, National Academies Press (available
- 256 online at: http://www.nap.edu/openbook.php?isbn=0309069416
- 257 United Nations, 2016: Open Working Group proposal for Sustainable Development Goals.
- 258 https://sustainabledevelopment.un.org/sdgsproposal

259

260 [BEGIN SIDEBAR]

261 A SAMPLING OF THEMATIC QUESTIONS AND RECOMMENDATIONS FOR A 2027

262 VISION

As the workshop progressed into individual themes such as health, water, agriculture, ecosystems, and disaster management, participants prioritized the key questions and recommendations through panel discussions and concluded with a consensus-based ranking. The following is a sample of questions as well as (indirect) determinations representing each of the five themes. The complete list of key questions and recommendations is available online.

- 268 Key Questions
- Health: How can we identify the most impactful intervention strategy for endemic and
 epidemic diseases in order to design Earth observing (EO)-based decision-making tools?
- Disaster Management: How is a "successful response" defined in order to maintain the
 EO-based capacity building community's ability to respond regularly to disasters in a
 sustainable manner?

274	•	Ecosystems: What type of EO missions and data have been most useful in resource
275		management? What are the categories of EO data that fall into research, operational
276		application or experimental observations?
277	•	Water: How do we strengthen users' understanding of the utility and uncertainty of
278		remote sensing information for water challenges?
279	•	Agriculture: How can EO data be used to improve the resilience of agricultural systems
280		to both gradual climate change and increased climatic variability and extremes?
281	Key R	Recommendations
282	•	Health: There needs to be greater investment in small satellites and stronger emphasis on
283		citizen science programs (volunteered geographic information) for health monitoring.
284	•	Disaster Management: To encourage greater engagement from the broader disaster
285		community, the EO data community should conduct and share results from action
286		reviews to assess the effectiveness of individual response efforts, and keep an inventory
287		of success stories on how Earth observations provide fundamental life-saving support to
288		disaster response.
289	•	Ecosystems: Programs need to be fostered that bring the Earth science applications
290		community into closer engagement with the business community through education
291		partnerships with a view to identifying successful private-public business models for
292		ecological forecasting and other cross-cutting themes.
293	•	Water: EO data community should engage in partnerships to build a one-stop data portal
294		from EO systems for water alone with examples on potential utility and uncertainty of
295		data.

296	• Agriculture: Effective ways to scale up inter-seasonal to inter-annual forecasting		
297	applications need to be explored involving water availability and food production. The		
298	necessary research to close the gaps in understanding the use of EO data for agricultural		
299	management should be promoted.		
300			
301	[END SIDEBAR]		
302	[BEGIN ONLINE SUPPLEMENT (TABLES)]		
303			
304	THEMATIC QUESTIONS AND RECOMMENDATIONS FOR A 2027 VISION		
305	As the workshop ("Globalizing societal applications of scientific research and observations from		
306	remote sensing") progressed into individual themes such as health, water, agriculture, ecosystems,		
307	and disaster management, participants prioritized the following key questions and		
308	recommendations through panel discussions and concluded with a consensus-based ranking. Note		
309	that the recommendations were not written to specifically answer the questions but rather to		
310	provide a broader perspective of the needs to build global capacity for societal applications of		
311	Earth observations.		
312			
313	Health and Air Quality		
314	Key Questions		
315	• How can we better adapt to the impact of climate change on changing disease burden		
316	(for both vector and waterborne) on vulnerable populations using trends derived from		
317	Earth observation data?		

318	•	If capacity to build Earth observing (EO)-based health monitoring improves around the
319		world, how do we measure the societal impact in terms of quality of life and lives saved?
320	•	How can we identify the most impactful intervention strategy for endemic and epidemic
321		diseases in order to design EO-based decision-making tools?
322	٠	How can the use of small satellites, aerial campaigns, and crowd sourcing programs
323		(citizen science) assist in building and improving more relevant health and air quality
324		monitoring tools that use conventional orbiting satellites?
325	•	What type of disease-relevant and region-specific EO tools should we build to empower
326		the health community?
327	•	Recognizing the inherent water nexus of water-borne disease, how can we facilitate
328		greater interaction of technical experts on water with the health monitoring community?
329		
330		Key Recommendations
331	•	A greater focus is needed on understanding how EO systems can best address the impact
332		of climate change on future disease burden.
333	٠	Recognizing the strong connections of water resources (availability) with waterborne
334		diseases, water community technical experts that use EO systems and data should partner
335		more effectively with the traditional health community.
336	•	There needs to be greater investment in small satellites and stronger emphasis on citizen
337		science programs (volunteered geographic information) for health monitoring.
338	•	Programs need to be in place that facilitate clearer communication and trust building
339		between the health stakeholder community and Earth scientists who use remote sensing
340		data for capacity building of health institutions around the world.

341	٠	In an effort to build durable capacity of Earth observing systems, space agencies and
342		other regional or global organizations should identify strategic partners from
343		philanthropic and private sector organizations with overlapping priorities that rely on
344		monitoring of environmental and Earth science data in their day-to-day operations.
345	Disast	er Management
346		Key Questions
347	•	What should be the primary role in disaster response for space agencies and
348		organizations that produce EO data?
349	•	How is a "successful response" defined in order to maintain the EO-based capacity
350		building community's ability to respond regularly to disasters in a sustainable manner?
351	•	What are the most effective ways to use radar observing platforms for disaster response?
352	•	How can space agencies partner with reinsurance market players towards identifying a
353		sustainable business model for humanitarian disaster response? What would be the
354		implication of such a move for non-profit disaster response agencies like Red Cross or
355		Mercy Corps or United Nations that are often the first set of 'boots on the ground' when
356		a disaster happens?
357		
358		Key Recommendations
359	•	To encourage greater engagement from the broader disaster community, the EO data
360		community should conduct and share results from action reviews to assess the
361		effectiveness of individual response efforts, and keep an inventory of success stories on
362		how Earth observations provide fundamental life-saving support to disaster response.

363	•	The EO data community should investigate ways to partner with private sector entities on
364		disaster reinsurance without compromising the greater-good agenda that non-profit
365		missions like Red Cross or Mercy Corps provide around the world.
366	•	Policies and Memorandum of Understanding (MOUs) should be in place for greater inter-
367		(space) agency partnership for data sharing at low latency to make Earth observing
368		systems more meaningful for disaster response.
369	•	More widespread use of radar observing platforms should be implemented for disaster
370		response and hazard monitoring, and capacity to use and interpret radar-derived products
371		should be built.
372	•	Space agencies and EO data organizations should have clear definition of scopes in place
373		to define the appropriate levels and durations of response to large-scale disaster events.
374		This will also help clarify the extent to which EO systems can address disaster
375		management agencies' needs and expectations.
376		
377	Ecosy	stems Function
378		Key Questions
379	•	What type of EO missions and data have been most useful in resource management?
380		What are the categories of EO data that fall into research, operational application or
381		experimental observations?
382	•	How can we use such classification of data to identify the percentage of the data that
383		should be funded for each category, which ones should remain free and funded by
384		government, and which should be funded through some public-private partnership for
385		resource management?

386	•	How can we tailor a successful model of co-produced ecological applications of remote
387		sensing in one area (such as fisheries) to another area (such as prevention of poaching)?
388	•	How do we build capacity in applications that can be as popular as LANDSAT- or
389		MODIS-derived but inclusive of more complex sensors that provide less intuitive
390		information than multispectral data (e.g., hyperspectral, radar)?
391		
392		Key Recommendations
393	•	The EO data community should create structured data at finer resolution on land
394		resources (vegetation, household, roadways structure) to enable wider application in
395		ecological forecasting and cross-cutting themes.
396	•	Simple metrics of uncertainty that have monetary implications should be associated with
397		Earth observations data used for resource management and ecological forecasting.
398	•	The EO data community should create programs and tools that help complex and less
399		intuitive data structures/format (such as radar backscatter or spherical harmonic
400		coefficients) become more intuitive and visualization-friendly for end users to enable
401		greater application of such data for resource mapping. Appropriate capacity should be
402		built in the coming decade to make such complex Earth observing data directly useable to
403		stakeholder agencies.
404	•	Programs need to be fostered that bring the Earth science applications community into
405		closer engagement with the business community through education partnerships with a
406		view to identifying successful private-public business models for ecological forecasting
407		and other cross-cutting themes.
408		

- 409 Water Resources
- 410 Key Questions
- How do we bring greater awareness of Earth observations value/products to the water
 management community?
- *How do we strengthen capacity of engineering private sectors to access data and help*
- 414 build products for their partners/clients? Can successful examples of private sector
 415 partnership on water be replicated internationally?
- How do we strengthen co-sponsors' and users' understanding of the utility and
- 417 *uncertainty of remote sensing information for water challenges?*
- How do we work with water resources practitioners to invest in building their technical
 capacity around remote sensing and data processing skills?
- What is the optimal way of communicating uncertainty of EO-based water products and
- 421 *at the same time engaging rather than hindering capacity building for water*
- 422 *management?*

- 424 Key Recommendations
- Given that many satellite Earth observing systems have a long heritage that exceeds
- 426 decades, EO data community should engage in pre- and post-analysis of water
- 427 availability for shared water resources around the world in order to help users understand428 the value of Earth observations.
- Space agencies should support studies that explore the cumulative impact of various
- 430 human decisions and sectoral communities (agriculture, energy and climate) on water
- 431 availability using the combined observational power of satellites.

432	• To address the grand challenge of informing users on the nearest safe drinking water
433	source, EO data community should engage in partnerships to build a one-stop data portal
434	from EO systems for water alone.
435	• Early adopter programs should evolve from a single-mission to a multi-mission format to
436	take advantage of the combined observational power of EO satellites.
437	• Space agencies and the EO data community should take advantage of water as the
438	common underlying theme of many philanthropic organizations to engage in public-
439	private partnerships to address water grand challenges of the future.
440	
441	Food and Agriculture
442	Key Questions
443	• What are the trends in agricultural management that take into account water scarcity
444	and environmental sustainability (e.g., systems approach)?
445	• What is the integrating source, what are the standards to achieve integration, and are
446	there common frameworks for EO-based agricultural management?
447	• How do we measure progress/success of applications of agricultural management,
448	particularly in the developing world?
449	• How can EO data be used to improve the resilience of agricultural systems to both
450	gradual climate change and increased climatic variability and extremes?
451	• What are the impacts of future climate change on agricultural management and yield?
452	• How can we predict food and water issues jointly with enough lead time to take actions
453	recognizing the nexus that exists between them?
454	

Key Recommendations

- 456 Effective ways to scale up inter-seasonal to inter-annual forecasting applications need to • 457 be explored involving water availability and food production. The necessary research to 458 close the gaps in understanding the use of EO data for agricultural management should be 459 promoted. 460 The EO data community should facilitate programs that can forecast agriculture growth • 461 to enable better food supply management. 462 • Fundamental research is required on the utility of Earth observations for predicting pest 463 prevalence and guiding the production of climate change resilient seeds. 464 Investigations on the impact of agricultural expansion on climate have been a missing • 465 piece that should now be explored for future adaptation policies.
- The EO data community and space agencies should foster greater strategic collaboration
- 467 with regional and global research laboratories around the world towards building better
- 468 capacity for agricultural management using Earth observations.
- 469
- 470 [END ONLINE SUPPLEMENT (TABLES)]